
CV32E40P User Manual

OpenHW Group

Aug 11, 2023

CONTENTS:

1 Changelog 1
1.1 cv32e40p_v1.4.0 . 1
1.2 cv32e40p_v1.3.2 . 1
1.3 cv32e40p_v1.3.1 . 1
1.4 cv32e40p_v1.3.0 . 1
1.5 cv32e40p_v1.2.1 . 1
1.6 cv32e40p_v1.2.0 . 1
1.7 cv32e40p_v1.0.0_doc . 2
1.8 cv32e40p_v1.1.0 . 2
1.9 cv32e40p_v1.0.0: . 2
1.10 pulpissimo-v1.0.0: . 2
1.11 pulpino-v1.0.0: . 2

2 Introduction 3
2.1 License . 4
2.2 Bus Interfaces . 4
2.3 Standards Compliance . 4
2.4 Contents . 5
2.5 History . 6

2.5.1 Memory-Protocol . 6
2.5.2 RV32F Extensions . 6
2.5.3 RV32A Extensions, Security and Memory Protection . 6
2.5.4 CSR Address Re-Mapping . 6
2.5.5 Interrupts . 6
2.5.6 PULP HWLoop Spec . 7
2.5.7 Compliancy, bug fixing, code clean-up, and documentation 7

2.6 References . 7
2.7 Contributors . 7

3 Core Integration 9
3.1 Instantiation Template . 9
3.2 Parameters . 11
3.3 Interfaces . 12
3.4 Clock Gating Cell . 12
3.5 Synthesis guidelines . 13

3.5.1 ASIC Synthesis . 13
3.5.2 FPGA Synthesis . 13
3.5.3 Synthesizing with the FPU . 13

4 Floating Point Unit (FPU) 15

i

4.1 CVFPU parameters . 15
4.2 FP Register File . 17
4.3 FP CSR . 17
4.4 Reminder for programmers . 17

5 Verification 19
5.1 v1.0.0 verification . 19
5.2 v2.0.0 verification . 20

5.2.1 Simulation verification . 20
5.2.2 Formal verification . 20
5.2.3 Reports . 20

5.3 Tracer . 21
5.3.1 Output file . 21
5.3.2 Trace output format . 21

6 CORE-V Hardware Loop feature 23
6.1 Hardware Loop constraints . 23

7 CORE-V Instruction Set Custom Extensions 25
7.1 Pseudo-instructions . 25
7.2 Post-Increment Load & Store Instructions and Register-Register Load & Store Instructions 26

7.2.1 Load operations . 26
7.2.2 Store operations . 27
7.2.3 Encoding . 27

7.3 Event Load Instruction . 28
7.3.1 Event Load operation . 28
7.3.2 Encoding . 29

7.4 Hardware Loops . 29
7.4.1 Hardware Loops operations . 29
7.4.2 Encoding . 30

7.5 ALU . 30
7.5.1 Bit Reverse Instruction . 30
7.5.2 Bit Manipulation operations . 32
7.5.3 Bit Manipulation Encoding . 33
7.5.4 General ALU operations . 33
7.5.5 General ALU Encoding . 35
7.5.6 Immediate Branching operations . 36
7.5.7 Immediate Branching Encoding . 36

7.6 Multiply-Accumulate . 37
7.6.1 16-Bit x 16-Bit Multiplication operations . 37
7.6.2 16-Bit x 16-Bit Multiplication pseudo-instructions . 37
7.6.3 16-Bit x 16-Bit Multiply-Accumulate operations . 38
7.6.4 32-Bit x 32-Bit Multiply-Accumulate operations . 38
7.6.5 Encoding . 38

7.7 SIMD . 39
7.7.1 SIMD ALU operations . 41
7.7.2 SIMD Comparison operations . 48
7.7.3 SIMD Comparison Encoding . 48
7.7.4 SIMD Complex-number operations . 50
7.7.5 SIMD Complex-numbers Encoding . 51

8 Performance Counters 53
8.1 Event Selector . 53
8.2 Controlling the counters from software . 54
8.3 Parametrization at synthesis time . 54

ii

8.4 Time Registers (time(h)) . 55

9 Control and Status Registers 57
9.1 CSR Map . 57
9.2 CSR Descriptions . 59

9.2.1 Floating-point CSRs . 59
9.2.2 Hardware Loops CSRs . 60
9.2.3 Other CSRs . 61
9.2.4 Trigger CSRs . 65
9.2.5 Debug CSRs . 67
9.2.6 Performances counters . 68
9.2.7 ID CSRs . 72
9.2.8 Non-RISC-V CSRs . 74

10 Exceptions and Interrupts 77
10.1 Interrupt Interface . 77
10.2 Interrupts . 78
10.3 Exceptions . 78
10.4 Nested Interrupt/Exception Handling . 79

11 Debug & Trigger 81
11.1 Debug Interface . 82
11.2 Core Debug Registers . 82
11.3 Debug state . 83
11.4 EBREAK Behavior . 85

11.4.1 Scenario 1 : Enter Exception . 85
11.4.2 Scenario 2 : Enter Debug Mode . 85
11.4.3 Scenario 3 : Exit Program Buffer & Restart Debug Code 86

11.5 Interrupts during Single-Step Behavior . 86

12 Pipeline Details 87
12.1 Hazards . 88
12.2 Single- and Multi-Cycle Instructions . 88

13 Instruction Fetch 91
13.1 Misaligned Accesses . 91
13.2 Protocol . 92

14 Load-Store-Unit (LSU) 95
14.1 Misaligned Accesses . 95
14.2 Protocol . 96
14.3 Post-Incrementing Load and Store Instructions . 96

15 Register File 101
15.1 Floating-Point Register File . 101

16 Sleep Unit 103
16.1 Startup behavior . 104
16.2 WFI . 104
16.3 PULP Cluster Extension . 105

17 Core Versions and RTL Freeze Rules 107
17.1 What happens after RTL Freeze? . 107

17.1.1 RTL changes on verified parameters . 107
17.1.2 A bug is found . 107

iii

17.1.3 RTL changes on non-verified yet parameters . 107
17.1.4 PPA optimizations and new features . 108

17.2 Non-backward compatibility . 108
17.2.1 Parameters . 108

17.3 Released core versions . 109
17.3.1 cv32e40p_v1.0.0 . 109
17.3.2 cv32e40p_v2.0.0 . 109

18 Glossary 111

iv

CHAPTER

ONE

CHANGELOG

1.1 cv32e40p_v1.4.0

Released on 2023-08-11 - GitHub

1.2 cv32e40p_v1.3.2

Released on 2023-06-27 - GitHub

1.3 cv32e40p_v1.3.1

Released on 2023-05-16 - GitHub

1.4 cv32e40p_v1.3.0

Released on 2023-04-18 - GitHub

1.5 cv32e40p_v1.2.1

Released on 2023-01-26 - GitHub

1.6 cv32e40p_v1.2.0

Released on 2022-12-16 - GitHub

1

https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.4.0
https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.3.2
https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.3.1
https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.3.0
https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.2.1
https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.2.0

CV32E40P User Manual

1.7 cv32e40p_v1.0.0_doc

Released on 2022-12-01 - GitHub

1.8 cv32e40p_v1.1.0

Released on 2022-11-14 - GitHub

1.9 cv32e40p_v1.0.0:

Released on 2020-12-10 - GitHub

1.10 pulpissimo-v1.0.0:

Released on 2018-01-23 - GitHub

1.11 pulpino-v1.0.0:

Released on 2018-01-23 - GitHub

2 Chapter 1. Changelog

https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.0.0_doc
https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.1.0
https://github.com/openhwgroup/cv32e40p/releases/tag/cv32e40p_v1.0.0
https://github.com/openhwgroup/cv32e40p/releases/tag/pulpissimo-v1.0.0
https://github.com/openhwgroup/cv32e40p/releases/tag/pulpino-v1.0.0

CHAPTER

TWO

INTRODUCTION

CV32E40P is a 4-stage in-order 32-bit RISC-V processor core. The ISA of CV32E40P has been extended to support
multiple additional instructions including hardware loops, post-increment load and store instructions, additional ALU
instructions and SIMD instructions that are not part of the standard RISC-V ISA. Figure 2.1 shows a block diagram of
the top level with the core and the FPU.

Figure 2.1: Block Diagram of CV32E40P RISC-V Core

3

CV32E40P User Manual

2.1 License

Copyright 2023 OpenHW Group.

Copyright 2018 ETH Zurich and University of Bologna.

Copyright and related rights are licensed under the Solderpad Hardware License, Version 0.51 (the “License”); you
may not use this file except in compliance with the License. You may obtain a copy of the License at http://solderpad.
org/licenses/SHL-0.51. Unless required by applicable law or agreed to in writing, software, hardware and materials
distributed under this License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations
under the License.

2.2 Bus Interfaces

The Instruction Fetch and Load/Store data bus interfaces are compliant to the OBI (Open Bus Interface) protocol.
See OBI-v1.2.pdf for details about the protocol. Additional information can be found in the Instruction Fetch and
Load-Store-Unit (LSU) chapters of this document.

2.3 Standards Compliance

CV32E40P is a standards-compliant 32-bit RISC-V processor. It follows these specifications:

• RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 20191213 (December 13, 2019)

• RISC-V Instruction Set Manual, Volume II: Privileged Architecture, document version 20190608-Base-Ratified
(June 8, 2019). CV32E40P implements the Machine ISA version 1.11.

• RISC-V External Debug Support, draft version 0.13.2

Many features in the RISC-V specification are optional, and CV32E40P can be parameterized to enable or disable
some of them.

CV32E40P supports the following base integer instruction set.

• The RV32I Base Integer Instruction Set, version 2.1

In addition, the following standard instruction set extensions are available.

Table 2.1: CV32E40P Standard Instruction Set Extensions
Standard Extension Version Configurability
C: Standard Extension for Compressed Instructions 2.0 always enabled
M: Standard Extension for Integer Multiplication and Division 2.0 always enabled
Zicntr: Performance Counters 2.0 always enabled
Zicsr: Control and Status Register Instructions 2.0 always enabled
Zifencei: Instruction-Fetch Fence 2.0 always enabled
F: Single-Precision Floating-Point using F registers 2.2 optionally enabled with the FPU pa-

rameter
Zfinx: Single-Precision Floating-Point using X registers 1.0 optionally enabled with the ZFINX

parameter (also requires the FPU pa-
rameter)

The following custom instruction set extensions are available.

4 Chapter 2. Introduction

http://solderpad.org/licenses/SHL-0.51
http://solderpad.org/licenses/SHL-0.51
https://raw.githubusercontent.com/openhwgroup/obi/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.2.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-debug-spec/raw/release/riscv-debug-release.pdf

CV32E40P User Manual

Table 2.2: CV32E40P Custom Instruction Set Extensions
Custom Extension Version Configurability
Xcv: CORE-V PULP ISA Extensions 1.0 optionally enabled with the COREV_PULP parameter
Xcvelw: CORE-V PULP Cluster ISA Ex-
tension

1.0 optionally enabled with the COREV_CLUSTER param-
eter

Most content of the RISC-V privileged specification is optional. CV32E40P currently supports the following features
according to the RISC-V Privileged Specification, version 1.11.

• M-Mode

• All CSRs listed in Control and Status Registers

• Hardware Performance Counters as described in Performance Counters controlled by the NUM_MHPMCOUNTERS
parameter

• Trap handling supporting direct mode or vectored mode as described at Exceptions and Interrupts

2.4 Contents

• Core Integration provides the instantiation template and gives descriptions of the design parameters as well as
the input and output ports. It gives synthesis guidelines as well, especially with respect to the Floating-Point
Unit.

• Floating Point Unit (FPU) describes the Floating Point Unit (FPU).

• Verification gives a brief overview of the verification methodology.

• CORE-V Hardware Loop feature describes the PULP Hardware Loop extension.

• CORE-V Instruction Set Custom Extensions describes the custom instruction set extensions.

• Performance Counters gives an overview of the performance monitors and event counters available in CV32E40P.

• The control and status registers are explained in Control and Status Registers.

• Exceptions and Interrupts deals with the infrastructure for handling exceptions and interrupts.

• Debug & Trigger gives a brief overview on the debug infrastructure.

• Pipeline Details described the overal pipeline structure.

• The instruction and data interfaces of CV32E40P are explained in Instruction Fetch and Load-Store-Unit (LSU),
respectively.

• The register-file is described in Register File.

• Sleep Unit describes the Sleep unit including the PULP Cluster extension.

• Core Versions and RTL Freeze Rules describes the core versioning.

• Glossary provides definitions of used terminology.

2.4. Contents 5

CV32E40P User Manual

2.5 History

CV32E40P started its life as a fork of the OR10N CPU core based on the OpenRISC ISA. Then, under the name of
RI5CY, it became a RISC-V core (2016), and it has been maintained by the PULP platform <https://pulp-platform.org>
team until February 2020, when it has been contributed to OpenHW Group https://www.openhwgroup.org.

As RI5CY has been used in several projects, a list of all the changes made by OpenHW Group since February 2020
follows:

2.5.1 Memory-Protocol

The Instruction and Data memory interfaces are now compliant with the OBI protocol (see OBI-v1.2.pdf). Such mem-
ory interface is slightly different from the one used by RI5CY as: the grant signal can now be kept high by the bus
even without the core raising a request; and the request signal does not depend anymore on the rvalid signal (no com-
binatorial dependency). The OBI is easier to be interfaced to the AMBA AXI and AHB protocols and improves timing
as it removes rvalid->req dependency. Also, the protocol forces the address stability. Thus, the core can not retract
memory requests once issued, nor can it change the issued address (as was the case for the RI5CY instruction memory
interface).

2.5.2 RV32F Extensions

Previously, RI5CY could select with a parameter whether the FPU was instantiated inside the EX stage or via the
APU interface. Now in CV32E40P, the FPU is not instantiated in the core EX stage anymore. A new file called
cv32e40p_top.sv is instantiating the core together with the FPU and APU interface is not visible on I/Os. This is this
new top level which has been used for Verification and Implementation.

2.5.3 RV32A Extensions, Security and Memory Protection

CV32E40P core does not support the RV32A (atomic) extensions, the U-mode, and the PMP anymore. Most of the
previous RTL descriptions of these features have been kept but not maintained. The RTL code has been partially kept
to allow previous users of these features to develop their own by reusing previously developed RI5CY modules.

2.5.4 CSR Address Re-Mapping

RI5CY used to have custom performance counters 32b wide (not compliant with RISC-V) in the CSR address space
{0x7A0, 0x7A1, 0x780-0x79F}. CV32E40P is now fully compliant with the RISC-V spec on performance counters
side. And the custom PULP HWLoop CSRs have been moved from the 0x7C* to RISC-V user custom read-only
0xCC0-0xCFF address space.

2.5.5 Interrupts

RI5CY used to have a req plus a 5 bits ID interrupt interface, supporting up to 32 interrupt requests (only one active
at a time), with the priority defined outside in an interrupt controller. CV32E40P is now compliant with the CLINT
RISC-V spec, extended with 16 custom interrupts lines called fast, for a total of 19 interrupt lines. They can be all
active simultaneously, and priority and per-request interrupt enable bit is controlled by the core CLINT definition.

6 Chapter 2. Introduction

https://pulp-platform.org
https://www.openhwgroup.org
https://raw.githubusercontent.com/openhwgroup/obi/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.2.pdf

CV32E40P User Manual

2.5.6 PULP HWLoop Spec

RI5CY supported two nested HWLoops. Every loop had a minimum of two instructions. The start and end of the loop
addresses could be misaligned, and the instructions in the loop body could be of any kind. CV32E40P has a more
restricted constraints for the HWLoop (see CORE-V Hardware Loop feature).

2.5.7 Compliancy, bug fixing, code clean-up, and documentation

The CV32E40P has been verified. It is fully compliant with RISC-V (RI5CY was partially compliant). Many bugs
have been fixed, and the RTL code cleaned-up. The documentation has been formatted with reStructuredText and has
been developed following at industrial quality level.

2.6 References

1. Gautschi, Michael, et al. “Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint De-
vices.” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700-2713,
Oct. 2017

2. Schiavone, Pasquale Davide, et al. “Slow and steady wins the race? A comparison of ultra-low-power RISC-
V cores for Internet-of-Things applications.” 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS 2017)

2.7 Contributors

Andreas Traber (atraber@iis.ee.ethz.ch)
Michael Gautschi (gautschi@iis.ee.ethz.ch)
Pasquale Davide Schiavone (pschiavo@iis.ee.ethz.ch)

Arjan Bink (arjan.bink@silabs.com)
Paul Zavalney (paul.zavalney@silabs.com)

Pascal Gouédo (pascal.gouedo@dolphin.fr)

Micrel Lab and Multitherman Lab
University of Bologna, Italy

Integrated Systems Lab
ETH Zürich, Switzerland

2.6. References 7

https://ieeexplore.ieee.org/document/7864441
https://ieeexplore.ieee.org/document/7864441
https://ieeexplore.ieee.org/document/7864441
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
mailto:atraber@iis.ee.ethz.ch
mailto:gautschi@iis.ee.ethz.ch
mailto:pschiavo@iis.ee.ethz.ch
mailto:arjan.bink@silabs.com
mailto:paul.zavalney@silabs.com
mailto:pascal.gouedo@dolphin.fr

CV32E40P User Manual

8 Chapter 2. Introduction

CHAPTER

THREE

CORE INTEGRATION

The main module is named cv32e40p_top and can be found in cv32e40p_top.sv. Below, the instantiation template
is given and the parameters and interfaces are described.

Note: cv32e40p_top instantiates former cv32e40p_core and a wrapped fpnew_top. It is highly suggested to use
cv32e40p_top in place of cv32e40p_core as it allows to easily enable/disable FPU parameter with no interface
change. As mentioned in Non-backward compatibility, v2.0.0 cv32e40p_core has slight modifications that makes it
not backward compatible with v1.0.0 one in some cases. It is worth mentioning that if the core in its v1 version was/is
instantiated without parameters setting, there is still backward compatibility as all parameters default value are set to
v1 values.

3.1 Instantiation Template

cv32e40p_top #(
.FPU (0),
.FPU_ADDMUL_LAT (0),
.FPU_OTHERS_LAT (0),
.ZFINX (0),
.COREV_PULP (0),
.COREV_CLUSTER (0),
.NUM_MHPMCOUNTERS (1)

) u_core (
// Clock and reset
.rst_ni (),
.clk_i (),
.scan_cg_en_i (),

// Special control signals
.fetch_enable_i (),
.pulp_clock_en_i (),
.core_sleep_o (),

// Configuration
.boot_addr_i (),
.mtvec_addr_i (),
.dm_halt_addr_i (),
.dm_exception_addr_i (),
.hart_id_i (),

(continues on next page)

9

CV32E40P User Manual

(continued from previous page)

// Instruction memory interface
.instr_addr_o (),
.instr_req_o (),
.instr_gnt_i (),
.instr_rvalid_i (),
.instr_rdata_i (),

// Data memory interface
.data_addr_o (),
.data_req_o (),
.data_gnt_i (),
.data_we_o (),
.data_be_o (),
.data_wdata_o (),
.data_rvalid_i (),
.data_rdata_i (),

// Interrupt interface
.irq_i (),
.irq_ack_o (),
.irq_id_o (),

// Debug interface
.debug_req_i (),
.debug_havereset_o (),
.debug_running_o (),
.debug_halted_o ()

);

10 Chapter 3. Core Integration

CV32E40P User Manual

3.2 Parameters

Table 3.1: Parameters
Name Type/Range Default Description
FPU bit 0 Enable Floating Point Unit (FPU) support, see Floating

Point Unit (FPU)
FPU_ADDMUL_LAT int 0 Number of pipeline registers for Floating-Point addi-

tion and multiplication instructions, see Floating Point
Unit (FPU)

FPU_OTHERS_LAT int 0 Number of pipeline registers for Floating-Point com-
parison, conversion and classify instructions, see
Floating Point Unit (FPU)

ZFINX bit 0 Enable Floating Point instructions to use the General
Purpose register file instead of requiring a dedicated
Floating Point register file, see Floating Point Unit
(FPU). Only allowed to be set to 1 if FPU = 1

COREV_PULP bit 0 Enable all of the custom PULP ISA extensions (ex-
cept cv.elw) (see CORE-V Instruction Set Custom Ex-
tensions) and all custom CSRs (see Control and Status
Registers).
Examples of PULP ISA extensions are post-
incrementing load and stores (see Post-Increment
Load & Store Instructions and Register-Register
Load & Store Instructions) and hardware loops (see
Hardware Loops).

COREV_CLUSTER bit 0 Enable PULP Cluster support (cv.elw), see PULP
Cluster Extension

NUM_MHPMCOUNTERS int (0..29) 1 Number of MHPMCOUNTER performance counters,
see Performance Counters

3.2. Parameters 11

CV32E40P User Manual

3.3 Interfaces

Table 3.2: Interfaces
Signal Width Dir Description
rst_ni 1 in Active-low asynchronous reset
clk_i 1 in Clock signal
scan_cg_en_i 1 in Scan clock gate enable. Design for test (DfT) related signal. Can

be used during scan testing operation to force instantiated clock
gate(s) to be enabled. This signal should be 0 during normal /
functional operation.

fetch_enable_i 1 in Enable the instruction fetch of CV32E40P. The first instruction
fetch after reset de-assertion will not happen as long as this signal
is 0. fetch_enable_i needs to be set to 1 for at least one cy-
cle while not in reset to enable fetching. Once fetching has been
enabled the value fetch_enable_i is ignored.

core_sleep_o 1 out Core is sleeping, see Sleep Unit.
pulp_clock_en_i 1 in PULP clock enable (only used when COREV_CLUSTER = 1, tie to

0 otherwise), see Sleep Unit
boot_addr_i 32 in Boot address. First program counter after reset = boot_addr_i.

Must be half-word aligned. Do not change after enabling core via
fetch_enable_i

mtvec_addr_i 32 in mtvec address. Initial value for the address part of Machine Trap-
Vector Base Address (mtvec). Do not change after enabling core
via fetch_enable_i

dm_halt_addr_i 32 in Address to jump to when entering Debug Mode, see Debug &
Trigger. Must be word-aligned. Do not change after enabling
core via fetch_enable_i

dm_exception_addr_i 32 in Address to jump to when an exception occurs when executing
code during Debug Mode, see Debug & Trigger. Must be word-
aligned. Do not change after enabling core via fetch_enable_i

hart_id_i 32 in Hart ID, usually static, can be read from Hardware Thread ID
(mhartid) and User Hardware Thread ID (uhartid) CSRs

instr_* Instruction fetch interface, see Instruction Fetch
data_* Load-store unit interface, see Load-Store-Unit (LSU)
irq_* Interrupt inputs, see Exceptions and Interrupts
debug_* Debug interface, see Debug & Trigger

3.4 Clock Gating Cell

CV32E40P requires clock gating cells. These cells are usually specific to the selected target technology and
thus not provided as part of the RTL design. A simulation-only version of the clock gating cell is provided in
cv32e40p_sim_clock_gate.sv. This file contains a module called cv32e40p_clock_gate that has the follow-
ing ports:

• clk_i: Clock Input

• en_i: Clock Enable Input

• scan_cg_en_i: Scan Clock Gate Enable Input (activates the clock even though en_i is not set)

• clk_o: Gated Clock Output

12 Chapter 3. Core Integration

CV32E40P User Manual

Inside CV32E40P, clock gating cells are used in both cv32e40p_sleep_unit.sv and cv32e40p_top.sv.

The cv32e40p_sim_clock_gate.sv file is not intended for synthesis. For ASIC synthesis and FPGA synthesis the
manifest should be adapted to use a customer specific file that implements the cv32e40p_clock_gate module using
design primitives that are appropriate for the intended synthesis target technology.

3.5 Synthesis guidelines

The CV32E40P core is fully synthesizable. It has been designed mainly for ASIC designs, but FPGA synthesis is
supported as well.

The top level module is called cv32e40p_top and includes both the core and the FPU. All the core
files are in rtl and rtl/include folders (all synthesizable) while all the FPU files are in rtl/
vendor/pulp_platform_common_cells, rtl/vendor/pulp_platform_fpnew and rtl/vendor/
pulp_platform_fpu_div_sqrt. .. while all the FPU files are in rtl/vendor/pulp_platform_common_cells,
rtl/vendor/pulp_platform_fpnew and rtl/vendor/opene906. cv32e40p_fpu_manifest.flist is listing all the
required files.

The user must provide a clock-gating module that instantiates the functionally equivalent clock-gating cell of the target
technology. This file must have the same interface and module name as the one provided for simulation-only purposes
at bhv/cv32e40p_sim_clock_gate.sv (see Clock Gating Cell).

The constraints/cv32e40p_core.sdc file provides an example of synthesis constraints.

3.5.1 ASIC Synthesis

ASIC synthesis is supported for CV32E40P. The whole design is completely synchronous and uses positive-edge trig-
gered flip-flops. The core occupies an area of about XX kGE. With the FPU, the area increases to about XX kGE (XX
kGE FPU, XX kGE additional register file). A technology specific implementation of a clock gating cell as described
in Clock Gating Cell needs to be provided.

3.5.2 FPGA Synthesis

FPGA synthesis is only supported for CV32E40P. The user needs to provide a technology specific implementation of
a clock gating cell as described in Clock Gating Cell.

3.5.3 Synthesizing with the FPU

By default the pipeline of the FPU is purely combinatorial (FPU_*_LAT = 0). In this case FPU instructions latency is
the same than simple ALU operations (except FP multicycle DIV/SQRT ones). But as FPU operations are much more
complex than ALU ones, maximum achievable frequency is much lower than ALU one when FPU is enabled. If this
can be fine for low frequency systems, it is possible to indicate how many pipeline registers are instantiated in the FPU
to reach higher target frequency. This is done with FPU_*_LAT CV32E40P parameters setting to perfectly fit target
frequency. It should be noted that any additional pipeline register is impacting FPU instructions latency and could
cause performances degradation depending of applications using Floating-Point operations. Those pipeline registers
are all added at the end of the FPU pipeline with all operators before them. Optimal frequency is only achievable using
automatic retiming commands in implementation tools. This can be achieved with the following command for Synopsys
Design Compiler: “set_optimize_registers true -designs [get_object_name [get_designs “*cv32e40p_fp_wrapper*”]]”.

3.5. Synthesis guidelines 13

CV32E40P User Manual

14 Chapter 3. Core Integration

CHAPTER

FOUR

FLOATING POINT UNIT (FPU)

The RV32F ISA extension for floating-point support in the form of IEEE-754 single precision can be enabled
by setting the parameter FPU of the cv32e40p_top top level module to 1. This will extend the CV32E40P
decoder accordingly and will instantiate the FPU. The FPU repository used by the CV32E40P is available at
https://github.com/openhwgroup/cvfpu and its documentation can be found here. CVFPU v1.0.0 release has been
copied in CV32E40P repository inside rtl/vendor (used for verification and implementation) so all core and FPU RTL
files should be taken from CV32E40P repository.

cv32e40p_fpu_manifest file is listing all necessary files for both the Core and CVFPU.

4.1 CVFPU parameters

As CVFPU is an highly configurable IP, here is the list of its parameters and their actual value used when CVFPU is
intantiated through a wrapper in cv32e40p_top module.

Table 4.1: CVFPU Features parameter
Name Type/Range Value Description
Width int 32 Datapath Width

Specifies the width of the input and output data ports and
of the datapath.

EnableVectors logic 0 Vectorial Hardware Generation
Controls the generation of packed-SIMD computation
units.

EnableNanBox logic 0 NaN-Boxing Check Control
Controls whether input value NaN-boxing is enforced.

FpFmtMask fmt_logic_t {1, 0, 0, 0, 0} Enabled Floating-Point Formats
Enables respectively:
IEEE Single-Precision format
IEEE Double-Precision format
IEEE Half-Precision format
Custom Byte-Precision format
Custom Alternate Half-Precision format

IntFmtMask ifmt_logic_t {0, 0, 1, 0} Enabled Integer Formats
Enables respectively:
Byte format
Half-Word format
Word format
Double-Word format

15

https://github.com/openhwgroup/cvfpu/tree/3116391bf66660f806b45e212b9949c528b4e270
https://github.com/openhwgroup/cvfpu/blob/3116391bf66660f806b45e212b9949c528b4e270/docs/README.md

CV32E40P User Manual

Table 4.2: CVFPU Implementation parameter
Name Type/Range Value Description
PipeRegs op-

grp_fmt_unsigned_t
{
{FPU_ADDMUL_LAT, 0, 0, 0, 0},
{default: 1},
{default: FPU_OTHERS_LAT},
{default: FPU_OTHERS_LAT}
}

Number of Pipelining Stages
This parameter sets a number of
pipeline stages to be inserted into
the computational units per opera-
tion group, per FP format. As such,
latencies for different operations
and different formats can be freely
configured.
Respectively:
ADDition/MULtiplication operation
group
DIVision/SQuare RooT operation
group
NON COMPuting operation group
CONVersion operation group
FPU_ADDMUL_LAT and
FPU_OTHERS_LAT are cv32e40p_top
parameters.

UnitTypes op-
grp_fmt_unit_types_t

{
{default: MERGED},
{default: MERGED},
{default: PARALLEL},
{default: MERGED}
}

HW Unit Implementation
This parameter allows to control re-
sources by either removing operation
units for certain formats and operations,
or merging multiple formats into one.
Respectively:
ADDition/MULtiplication operation
group
DIVision/SQuare RooT operation
group
NON COMPuting operation group
CONVersion operation group

PipeConfig pipe_config_t AFTER Pipeline Register Placement
This parameter controls where pipel-
ing registers (number defined by
PipeRegs) are placed in each opera-
tional unit.
AFTER means they are all placed at the
output of each operational unit.
See Synthesizing with the FPU advices
to get best synthesis results.

Table 4.3: Other CVFPU parameters
Name Type/Range Value Description
TagType logic The SystemVerilog data type of the operation tag input and

output ports.
TrueSIMDClass int 0 Vectorial mode classify operation RISC-V compliancy.
EnableSIMDMask int 0 Inactive vectorial lanes floating-point status flags masking.

16 Chapter 4. Floating Point Unit (FPU)

CV32E40P User Manual

4.2 FP Register File

By default a dedicated register file consisting of 32 floating-point registers, f0-f31, is instantiated. This default behavior
can be overruled by setting the parameter ZFINX of the cv32e40p_top top level module to 1, in which case the
dedicated register file is not included and the general purpose register file is used instead to host the floating-point
operands.

The latency of the individual instructions are explained in Cycle counts per instruction type table.

To allow FPU unit to be put in sleep mode at the same time the core is doing so, a clock gating cell is instantiated in
cv32e40p_top top level module as well with its enable signal being inverted core_sleep_o core output.

4.3 FP CSR

When using floating-point extensions the standard specifies a floating-point status and control register (Floating-point
control and status register (fcsr)) which contains the exceptions that occurred since it was last reset and the rounding
mode. Floating-point accrued exceptions (fflags) and Floating-point dynamic rounding mode (frm) can be accessed
directly or via Floating-point control and status register (fcsr) which is mapped to those two registers.

4.4 Reminder for programmers

As mentioned in RISC-V Privileged Architecture specification, mstatus.FS should be set to Initial to be able to use
FP instructions. If mstatus.FS = Off (reset value), any instruction that attempts to read or write the Floating-Point
state (F registers or F CSRs) will cause an illegal instruction exception.

Upon interrupt or context switch events, mstatus.SD should be read to see if Floating-Point state has been altered. If
following executed program (interrupt routine or whatsover) is going to use FP instructions and only if mstatus.SD
= 1 (means FS = Dirty), then the whole FP state (F registers and F CSRs) should be saved in memory and program
should set mstatus.FS to Clean. When returning to interrupted or main program, if mstatus.FS = Clean then the
whole FP state should be restored from memory.

4.2. FP Register File 17

CV32E40P User Manual

18 Chapter 4. Floating Point Unit (FPU)

CHAPTER

FIVE

VERIFICATION

The verification environment (testbenches, testcases, etc.) for the CV32E40P core can be found at core-v-verif. It is
recommended to start by reviewing the CORE-V Verification Strategy.

5.1 v1.0.0 verification

In early 2021 the CV32E40P achieved Functional RTL Freeze (released with cv32e40p_v1.0.0 version), meaning that
is has been fully verified as per its Verification Plan. Final functional, code and test coverage reports can be found here.

The unofficial start date for the CV32E40P verification effort is 2020-02-27, which is the date the core-v-verif environ-
ment “went live”. Between then and RTL Freeze, a total of 47 RTL issues and 38 User Manual issues were identified
and resolved1. A breakdown of the RTL issues is as follows:

Table 5.1: How RTL Issues Were Found
“Found By” Count Note
Simulation 18 See classification below
Inspection 13 Human review of the RTL
Formal Verification 13 This includes both Designer and Verifier use of FV
Lint 2
Unknown 1

A classification of the simulation issues by method used to identify them is informative:

Table 5.2: Breakdown of Issues found by Simulation
Simulation Method Count Note
Directed, self-checking test 10 Many test supplied by Design team and a couple from the Open Source

Community at large
Step & Compare 6 Issues directly attributed to S&C against ISS
Constrained-Random 2 Test generated by corev-dv (extension of riscv-dv)

A classification of the issues themselves:
1 It is a testament on the quality of the work done by the PULP platform team that it took a team of professonal verification engineers more than

9 months to find all these issues.

19

https://github.com/openhwgroup/core-v-verif
https://docs.openhwgroup.org/projects/core-v-verif/en/latest
https://github.com/openhwgroup/core-v-verif/tree/cv32e40p/dev/cv32e40p/docs/VerifPlans/README.md
https://github.com/openhwgroup/core-v-verif/blob/master/docs/Reports/cv32e40p/index.html

CV32E40P User Manual

Table 5.3: Issue Classification
Issue Type Count Note
RTL Functional 40 A bug!
RTL coding style 4 Linter issues, removing TODOs, removing `ifdefs, etc.
Non-RTL functional 1 Issue related to behavioral tracer (not part of the core)
Unreproducible 1
Invalid 1

Additional details are available as part of the CV32E40P v1.0.0 Report.

5.2 v2.0.0 verification

5.2.1 Simulation verification

core-v-verif verification environment for v1.0.0 was using a step&compare methodology with an instruction set sim-
ulator (ISS) from Imperas Software as the reference model. This strategy was successful, but inefficient because the
step&compare logic in the testbench must compensate for the cycle-time effects of events that are asynchronous to the
instruction stream such as interrupts, debug resets plus bus errors and random delays on instruction fetch and load/store
memory buses. For verification of v2.0.0 release of the CV32E40P core, the step-and-compare and the ISS have been
replaced by a true reference model (RM) called ImperasDV. In addition, the Imperas Reference Model has been ex-
tended to support the v2 Xpulp instructions specification.

Another innovation for v2.0.0 was the adoption of a standardized tracer interface to the DUT and RM, based on the open-
source RISC-V Verification Interface (RVVI). The use of well documented, standardized interfaces greatly simplifies
the integration of the DUT with the RM.

WIP. . .

5.2.2 Formal verification

To accelerate the verification of more than 300 Xpulp instructions, Formal Verification methodology has been used
with Siemens EDA Onespin tools and their RISC-V ISA app.

The Xpulp instructions pseudo-code description using Sail language have been added to the RISC-V ISA app to suc-
cessfully formally verify all the CV32E40P instructions, including the previously verified standard IMC together with
the new F, Zfinx and Xpulp extensions. This has been applied on 5 different core configurations (controlled via Sys-
temVerilog parameters).

WIP. . .

5.2.3 Reports

WIP. . .

20 Chapter 5. Verification

https://github.com/openhwgroup/programs/tree/master/milestones/CV32E40P/RTL_Freeze_v1.0.0

CV32E40P User Manual

5.3 Tracer

TODO: To re-work with ImperasDV tracer.

The module cv32e40p_tracer can be used to create a log of the executed instructions. It is a behavioral, non-
synthesizable, module instantiated in the example testbench that is provided for the cv32e40p_top. It can be enabled
during simulation by defining CV32E40P_TRACE_EXECUTION.

5.3.1 Output file

All traced instructions are written to a log file. The log file is named trace_core_<HARTID>.log, with <HARTID>
being the 32 digit hart ID of the core being traced.

5.3.2 Trace output format

The trace output is in tab-separated columns.

1. Time: The current simulation time.

2. Cycle: The number of cycles since the last reset.

3. PC: The program counter

4. Instr: The executed instruction (base 16). 32 bit wide instructions (8 hex digits) are uncompressed instructions,
16 bit wide instructions (4 hex digits) are compressed instructions.

5. Decoded instruction: The decoded (disassembled) instruction in a format equal to what objdump produces
when calling it like objdump -Mnumeric -Mno-aliases -D. - Unsigned numbers are given in hex (prefixed
with 0x), signed numbers are given as decimal numbers. - Numeric register names are used (e.g. x1). - Symbolic
CSR names are used. - Jump/branch targets are given as absolute address if possible (PC + immediate).

6. Register and memory contents: For all accessed registers, the value before and after the instruction execution is
given. Writes to registers are indicated as registername=value, reads as registername:value. For memory
accesses, the address and the loaded and stored data are given.

Time Cycle PC Instr Decoded instruction Register and memory contents
130 61 00000150 4481 c.li x9,0 x9=0x00000000
132 62 00000152 00008437 lui x8,0x8 x8=0x00008000
134 63 00000156 fff40413 addi x8,x8,-1 x8:0x00008000 x8=0x00007fff
136 64 0000015a 8c65 c.and x8,x9 x8:0x00007fff x9:0x00000000␣
→˓x8=0x00000000
142 67 0000015c c622 c.swsp x8,12(x2) x2:0x00002000 x8:0x00000000␣
→˓PA:0x0000200c

5.3. Tracer 21

CV32E40P User Manual

22 Chapter 5. Verification

CHAPTER

SIX

CORE-V HARDWARE LOOP FEATURE

To increase the efficiency of small loops, CV32E40P supports hardware loops (HWLoop). They can be enabled by
setting the COREV_PULP parameter. Hardware loops make executing a piece of code multiple times possible, without
the overhead of branches penalty or updating a counter. Hardware loops involve zero stall cycles for jumping to the
first instruction of a loop.

A hardware loop is defined by its start address (pointing to the first instruction in the loop), its end address (pointing
to the instruction just after the last one executed by the loop) and a counter that is decremented every time the last
instruction of the loop body is executed.

CV32E40P contains two hardware loop register sets to support nested hardware loops, each of them can store these
three values in separate flip flops which are mapped in the CSR address space. Loop number 0 has higher priority than
loop number 1 in a nested loop configuration, meaning that loop 0 represents the inner loop and loop 1 is the outer
loop.

6.1 Hardware Loop constraints

Following constraints must be respected by any toolchain compiler or by hand-written assembly code. Violation of
these constraints will not generate any hardware exception and behaviour is undefined.

In order to catch as early as possible those software exceptions when executing a program either on a verification
Reference Model or on a virtual platform Instruction Set Simulator, those model/simulation platforms must
generate a fatal error with a meaningfull message related to Hardware Loops constraints violation.

The HWLoop constraints are:

• HWLoop start, end and setup instructions addresses must be 32-bit aligned (short or long commands).

• Start and End addresses of an HWLoop body must be 32-bit aligned.

• End Address must be strictly greater than Start Address.

• End address of an HWLoop must point to the instruction just after the last one of the HWLoop body.

• HWLoop body must contain at least 3 instructions.

• When both loops are nested, the End address of the outermost HWLoop (must be #1) must be at least 2 in-
structions further than the End address of the innermost HWLoop (must be #0), i.e. HWLoop[1].endaddress >=
HWLoop[0].endaddress + 8.

• HWLoop must always be entered from its start location (no branch/jump to a location inside a HWLoop body).

• No HWLoop #0 (resp. #1) CSR should be modified inside the HWLoop #0 (resp. #1) body.

• No Compressed instructions (RVC) allowed in the HWLoop body.

• No jump or branch instructions allowed in the HWLoop body.

23

CV32E40P User Manual

• No memory ordering instructions (fence, fence.i) allowed in the HWLoop body.

• No privileged instructions (mret, dret, ecall, wfi) allowed in the HWLoop body, except for ebreak.

The rationale of NOT generating any hardware exception when violating any of those constraints is that it would
add resources (32-bit adders and substractors needed for the third and fourth rules) which are costly in area and power
consumption. These additional (and costly) resources would be present just to catch situations that should never happen.
This in an architectural choice in order to keep CV32E40P area and power consumption to its lowest level.

The rationale of putting the end-of-loop label to the first instruction after the last one of the loop body is that it greatly
simplifies compiler optimization (relative to basic blocks management).

In order to use hardware loops, the compiler needs to setup the loops beforehand with cv.start/i, cv.end/i, cv.count/i or
cv.setup/i instructions. The compiler will use HWLoop automatically whenever possible without the need of assembly.

For debugging and context switches, the hardware loop registers are mapped into the CSR custom read-only address
space. To read them csrr instructions should be used and to write them register flavour of hardware loop instructions
should be used. Using csrw instructions to write hardware loop registers will generate an illegal instruction exception.

Since hardware loop feature could be used in interrupt routine/handler, the registers have to be saved (resp. restored)
at the beginning (resp. end) of the interrupt routine together with the general purpose registers. The CSR HWLoop
registers are described in the Control and Status Registers section.

Below an assembly code example of a nested HWLoop that computes a matrix addition.

1 asm volatile (
2 "add %[i],x0, x0;"
3 "add %[j],x0, x0;"
4 "cv.count 1, %[N];"
5 ".balign 4;"
6 "cv.endi 1, endO;"
7 "cv.starti 1, startO;"
8 "any instructions here"
9 ".balign 4;"

10 "cv.endi 0, endZ;"
11 "cv.starti 0, startZ;"
12 "any instructions here"
13 ".balign 4;"
14 ".option norvc;"
15 "startO:;"
16 " cv.count 0, %[N];"
17 " startZ:;"
18 " addi %[i], %[i], 1;"
19 " addi %[i], %[i], 1;"
20 " addi %[i], %[i], 1;"
21 " endZ:;"
22 " addi %[j], %[j], 2;"
23 " addi %[j], %[j], 2;"
24 "endO:;"
25 : [i] "+r" (i), [j] "+r" (j)
26 : [N] "r" (10)
27);

At the beginning of the HWLoop, the registers %[i] and %[j] are 0. The innermost loop, from startZ to (endZ - 4), adds
to %[i] three times 1 and it is executed 10x10 times. Whereas the outermost loop, from startO to (endO - 4), executes
10 times the innermost loop and adds two times 2 to the register %[j]. At the end of the loop, the register %[i] contains
300 and the register %[j] contains 40.

24 Chapter 6. CORE-V Hardware Loop feature

CHAPTER

SEVEN

CORE-V INSTRUCTION SET CUSTOM EXTENSIONS

CV32E40P supports the following CORE-V ISA X Custom Extensions, which can be enabled by setting COREV_PULP
== 1.

• Post-Increment load and stores, see Post-Increment Load & Store Instructions and Register-Register Load &
Store Instructions, invoked in the tool chain with -march=rv32i*_xcvmem.

• Hardware Loop extension, see Hardware Loops, invoked in the tool chain with -march=rv32i*_xcvhwlp.

• ALU extensions, see ALU, which are divided into three sub-extensions:

– bit manipulation instructions, invoked in the tool chain with -march=rv32i*_xcvbitmanip;

– miscellaneous ALU instructions, invoked in the tool chain with -march=rv32i*_xcvalu; and

– immediate branch instructions, invoked in the tool chain with -march=rv32i*_xcvbi.

• Multiply-Accumulate extensions, see Multiply-Accumulate, invoked in the tool chain with
-march=rv32i*_xcvmac.

• Single Instruction Multiple Data (aka SIMD) extensions, see SIMD, invoked in the tool chain with
-march=rv32i*_xcvsimd.

Additionally the event load instruction (cv.elw) is supported by setting COREV_CLUSTER == 1, see Event Load Instruc-
tion. This is a separate ISA extension, invoked in the tool chain with -march=rv32i*_xcvelw.

If not specified, all the operands are signed and immediate values are sign-extended.

To use such instructions, you need to compile your SW with the CORE-V GCC or Clang/LLVM compiler.

Note: Clang/LLVM assembler will be supported by 30 June 2023, with builtin function support by 31 December
2023.

7.1 Pseudo-instructions

This specification also includes documentation of some CORE-V pseudo-instructions. Pseudo-instructions are im-
plemented in the assembler that are similar to a base instruction but provides control information to the assembler as
opposed to generating its base instruction. This makes it easier to program as we gain clarity on the intention of the
programmer.

• 16-Bit x 16-Bit Multiplication pseudo-instructions, see 16-Bit x 16-Bit Multiplication pseudo-instructions.

25

CV32E40P User Manual

7.2 Post-Increment Load & Store Instructions and Register-Register
Load & Store Instructions

Post-Increment load and store instructions perform a load, or a store, respectively, while at the same time incrementing
the address that was used for the memory access. Since it is a post-incrementing scheme, the base address is used for
the access and the modified address is written back to the register-file. There are versions of those instructions that use
immediates and those that use registers as offsets. The base address always comes from a register.

The custom post-increment load & store instructions and register-register load & store instructions are only supported
if COREV_PULP == 1.

7.2.1 Load operations

Note: When same register is used as address and destination (rD == rs1) for post-incremented loads, loaded data has
highest priority over incremented address when writing to this same register.

Table 7.1: Load operations
Mnemonic Description
Register-Immediate Loads with Post-Increment
cv.lb rD, (rs1), Imm rD = Sext(Mem8(rs1))

rs1 += Sext(Imm[11:0])
cv.lbu rD, (rs1), Imm rD = Zext(Mem8(rs1))

rs1 += Sext(Imm[11:0])
cv.lh rD, (rs1), Imm rD = Sext(Mem16(rs1))

rs1 += Sext(Imm[11:0])
cv.lhu rD, (rs1), Imm rD = Zext(Mem16(rs1))

rs1 += Sext(Imm[11:0])
cv.lw rD, (rs1), Imm rD = Mem32(rs1)

rs1 += Sext(Imm[11:0])
Register-Register Loads with Post-Increment
cv.lb rD, (rs1), rs2 rD = Sext(Mem8(rs1))

rs1 += rs2
cv.lbu rD, (rs1), rs2 rD = Zext(Mem8(rs1))

rs1 += rs2
cv.lh rD, (rs1), rs2 rD = Sext(Mem16(rs1))

rs1 += rs2
cv.lhu rD, (rs1), rs2 rD = Zext(Mem16(rs1))

rs1 += rs2
cv.lw rD, (rs1), rs2 rD = Mem32(rs1)

rs1 += rs2
Register-Register Loads
cv.lb rD, rs2(rs1) rD = Sext(Mem8(rs1 + rs2))
cv.lbu rD, rs2(rs1) rD = Zext(Mem8(rs1 + rs2))
cv.lh rD, rs2(rs1) rD = Sext(Mem16(rs1 + rs2))
cv.lhu rD, rs2(rs1) rD = Zext(Mem16(rs1 + rs2))
cv.lw rD, rs2(rs1) rD = Mem32(rs1 + rs2)

26 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

7.2.2 Store operations

Table 7.2: Store operations
Mnemonic Description
Register-Immediate Stores with Post-Increment
cv.sb rs2, (rs1), Imm Mem8(rs1) = rs2

rs1 += Sext(Imm[11:0])
cv.sh rs2, (rs1), Imm Mem16(rs1) = rs2

rs1 += Sext(Imm[11:0])
cv.sw rs2, (rs1), Imm Mem32(rs1) = rs2

rs1 += Sext(Imm[11:0])
Register-Register Stores with Post-Increment
cv.sb rs2, (rs1), rs3 Mem8(rs1) = rs2

rs1 += rs3
cv.sh rs2, (rs1), rs3 Mem16(rs1) = rs2

rs1 += rs3
cv.sw rs2, (rs1), rs3 Mem32(rs1) = rs2

rs1 += rs3
Register-Register Stores
cv.sb rs2, rs3(rs1) Mem8(rs1 + rs3) = rs2
cv.sh rs2 rs3(rs1) Mem16(rs1 + rs3) = rs2
cv.sw rs2, rs3(rs1) Mem32(rs1 + rs3) = rs2

7.2.3 Encoding

Table 7.3: Post-Increment Register-Immediate Load operations encoding
31 : 20 19 : 15 14 : 12 11 : 7 6 : 0
imm[11:0] rs1 funct3 rD opcode Mnemonic
offset base 000 dest 000 1011 cv.lb rD, (rs1), Imm
offset base 100 dest 000 1011 cv.lbu rD, (rs1), Imm
offset base 001 dest 000 1011 cv.lh rD, (rs1), Imm
offset base 101 dest 000 1011 cv.lhu rD, (rs1), Imm
offset base 010 dest 000 1011 cv.lw rD, (rs1), Imm

Table 7.4: Post-Increment Register-Register Load operations encoding
31 : 25 24 : 20 19 : 15 14 : 12 11 : 7 6 : 0
funct7 rs2 rs1 funct3 rD opcode Mnemonic
000 0000 offset base 011 dest 010 1011 cv.lb rD, (rs1), rs2
000 1000 offset base 011 dest 010 1011 cv.lbu rD, (rs1), rs2
000 0001 offset base 011 dest 010 1011 cv.lh rD, (rs1), rs2
000 1001 offset base 011 dest 010 1011 cv.lhu rD, (rs1), rs2
000 0010 offset base 011 dest 010 1011 cv.lw rD, (rs1), rs2

7.2. Post-Increment Load & Store Instructions and Register-Register Load & Store Instructions 27

CV32E40P User Manual

Table 7.5: Register-Register Load operations encoding
31 : 25 24 : 20 19 : 15 14 : 12 11 : 7 6 : 0
funct7 rs2 rs1 funct3 rD opcode Mnemonic
000 0100 offset base 011 dest 010 1011 cv.lb rD, rs2(rs1)
000 1100 offset base 011 dest 010 1011 cv.lbu rD, rs2(rs1)
000 0101 offset base 011 dest 010 1011 cv.lh rD, rs2(rs1)
000 1101 offset base 011 dest 010 1011 cv.lhu rD, rs2(rs1)
000 0110 offset base 011 dest 010 1011 cv.lw rD, rs2(rs1)

Table 7.6: Post-Increment Register-Immediate Store operations encoding
31 : 25 24 : 20 19 : 15 14 : 12 11 : 7 6 : 0
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode Mnemonic
offset[11:5] src base 000 offset[4:0] 010 1011 cv.sb rs2, (rs1), Imm
offset[11:5] src base 001 offset[4:0] 010 1011 cv.sh rs2, (rs1), Imm
offset[11:5] src base 010 offset[4:0] 010 1011 cv.sw rs2, (rs1), Imm

Table 7.7: Post-Increment Register-Register Store operations encoding
31 : 25 24 : 20 19 : 15 14 : 12 11 : 7 6 : 0
funct7 rs2 rs1 funct3 rs3 opcode Mnemonic
001 0000 src base 011 offset 010 1011 cv.sb rs2, (rs1), rs3
001 0001 src base 011 offset 010 1011 cv.sh rs2, (rs1), rs3
001 0010 src base 011 offse t 010 1011 cv.sw rs2, (rs1), rs3

Table 7.8: Register-Register Store operations encoding
31 : 25 24 : 20 19 : 15 14 : 12 11 : 7 6 : 0
funct7 rs2 rs1 funct3 rs3 opcode Mnemonic
001 0100 src base 011 offset 010 1011 cv.sb rs2, rs3(rs1)
001 0101 src base 011 offset 010 1011 cv.sh rs2, rs3(rs1)
001 0110 src base 011 offset 010 1011 cv.sw rs2, rs3(rs1)

7.3 Event Load Instruction

The event load instruction cv.elw is only supported if the COREV_CLUSTER parameter is set to 1. The event load
performs a load word and can cause the CV32E40P to enter a sleep state as explained in PULP Cluster Extension.

7.3.1 Event Load operation

Table 7.9: Event Load operation
Mnemonic Description
Event Load
cv.elw rD, Imm(rs1) rD = Mem32(Sext(Imm) + rs1)

28 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

7.3.2 Encoding

Table 7.10: Event Load operation encoding
31 : 20 19 : 15 14 : 12 11 : 7 6 : 0
imm[11:0] rs1 funct3 rD opcode Mnemonic
offset base 011 dest 000 1011 cv.elw rD, Imm(rs1)

7.4 Hardware Loops

The loop has to be setup before entering the loop body. For this purpose, there are two methods, either the long
commands that separately set start- and end-addresses of the loop and the number of iterations, or the short command
that does all of this in a single instruction. The short command has a limited range for the number of instructions
contained in the loop and the loop must start in the next instruction after the setup instruction.

Due to start/end addresses constraint, the 2 LSBs are hardwired to 0. When using cv.start and cv.end instructions, the
2 LSBs of rs1 are ignored.

Hardware loop instructions and related CSRs are only supported if COREV_PULP == 1.

Details about the hardware loop constraints are provided in CORE-V Hardware Loop feature.

In the following tables, the hardware loop instructions are reported. In assembly, L is referred by 0 or 1.

7.4.1 Hardware Loops operations

Table 7.11: Long Hardware Loop Setup operations
Mnemonic Description
cv.starti L, uimmL lpstart[L] = PC + (uimmL << 2)
cv.start L, rs1 lpstart[L] = rs1
cv.endi L, uimmL lpend[L] = PC + (uimmL << 2)
cv.end L, rs1 lpend[L] = rs1
cv.counti L, uimmL lpcount[L] = uimmL
cv.count L, rs1 lpcount[L] = rs1

Table 7.12: Short Hardware Loop Setup operations
Mnemonic Description
cv.setupi L, uimmL, uimmS lpstart[L] = PC + 4

lpend[L] = PC + (uimmS << 2)
lpcount[L] = uimmL

cv.setup L, rs1, uimmL lpstart[L] = PC + 4
lpend[L] = PC + (uimmL << 2)
lpcount[L] = rs1

7.4. Hardware Loops 29

CV32E40P User Manual

7.4.2 Encoding

Table 7.13: Hardware Loops operations encoding
31 : 20 19 : 15 14 : 12 11 : 8 7 6 : 0
uimmL[11:0] rs1 funct3 funct4 L opcode Mnemonic
uimmL[11:0] 00000 100 0000 L 010 1011 cv.starti L, uimmL
0000 0000 0000 src1 100 0001 L 010 1011 cv.start L, rs1
uimmL[11:0] 00000 100 0010 L 010 1011 cv.endi L, uimmL
0000 0000 0000 src1 100 0011 L 010 1011 cv.end L, rs1
uimmL[11:0] 00000 100 0100 L 010 1011 cv.counti L, uimmL
0000 0000 0000 src1 100 0101 L 010 1011 cv.count L, rs1
uimmL[11:0] uimmS[4:0] 100 0110 L 010 1011 cv.setupi L, uimmL, uimmS
uimmL[11:0] src1 100 0111 L 010 1011 cv.setup L, rs1, uimmL

7.5 ALU

CV32E40P supports advanced ALU operations that allow to perform multiple instructions that are specified in the
base instruction set in one single instruction and thus increases efficiency of the core. For example, those instructions
include zero-/sign-extension instructions for 8-bit and 16-bit operands, simple bit manipulation/counting instructions
and min/max/avg instructions. The ALU does also support saturating, clipping and normalizing instructions which
make fixed-point arithmetic more efficient.

The custom ALU extensions are only supported if COREV_PULP == 1.

The custom extensions to the ALU are split into several subgroups that belong together.

• Bit manipulation instructions are useful to work on single bits or groups of bits within a word, see Bit Manipu-
lation operations.

• General ALU instructions try to fuse common used sequences into a single instruction and thus increase the
performance of small kernels that use those sequence, see General ALU operations.

• Immediate branching instructions are useful to compare a register with an immediate value before taking or not
a branch, see see Immediate Branching operations.

Extract, Insert, Clear and Set instructions have the following meaning:

• Extract Is3+1 or rs2[9:5]+1 bits from position Is2 or rs2[4:0] [and sign extend it]

• Insert Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]

• Clear Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]

• Set Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]

7.5.1 Bit Reverse Instruction

This section will describe the cv.bitrev instruction from a bit manipulation perspective without describing it’s applica-
tion as part of an FFT. The bit reverse instruction will reverse bits in groupings of 1, 2 or 3 bits. The number of grouped
bits is described by Is3 as follows:

• 0 - reverse single bits

• 1 - reverse groups of 2 bits

• 2 - reverse groups of 3 bits

30 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

The number of bits that are reversed can be controlled by Is2. This will specify the number of bits that will be removed
by a left shift prior to the reverse operation resulting in the 32-Is2 least significant bits of the input value being reversed
and the Is2 most significant bits of the input value being thrown out.

What follows is a few examples.

cv.bitrev x18, x20, 0, 4 (groups of 1 bit; radix-2)

in: 0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out: 0x0CC9A526 00001100110010011010010100100110

Swap pattern:
A B C D E F G H .
0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0
. H G F E D C B A
0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0

In this example the input value is first shifted by 4 (Is2). Each individual bit is reversed. For example, bits 31 and 0 are
swapped, 30 and 1, etc.

cv.bitrev x18, x20, 1, 4 (groups of 2 bits; radix-4)

in: 0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out: 0x0CC65A19 00001100110001100101101000011001

Swap pattern:
A B C D E F G H I J K L M N O P
01 10 01 00 10 10 01 01 10 01 00 11 00 11 00 00
P O N M L K J I H G F E D C B A
00 00 11 00 11 00 01 10 01 01 10 10 00 01 10 01

In this example the input value is first shifted by 4 (Is2). Each group of two bits are reversed. For example, bits 31 and
30 are swapped with 1 and 0 (retaining their position relative to each other), bits 29 and 28 are swapped with 3 and 2,
etc.

cv.bitrev x18, x20, 2, 4 (groups of 3 bits; radix-8)

in: 0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out: 0x216B244B 00100001011010110010010001001011

Swap pattern:
A B C D E F G H I J
011 001 001 010 010 110 010 011 001 100 00

J I H G F E D C B A
00 100 001 011 010 110 010 010 001 001 011

In this last example the input value is first shifted by 4 (Is2). Each group of three bits are reversed. For example, bits 31,
30 and 29 are swapped with 4, 3 and 2 (retaining their position relative to each other), bits 28, 27 and 26 are swapped
with 7, 6 and 5, etc. Notice in this example that bits 0 and 1 are lost and the result is shifted right by two with bits 31
and 30 being tied to zero. Also notice that when J (100) is swapped with A (011), the four most significant bits are no
longer zero as in the other cases. This may not be desirable if the intention is to pack a specific number of grouped
bits aligned to the least significant bit and zero extended into the result. In this case care should be taken to set Is2

7.5. ALU 31

CV32E40P User Manual

appropriately.

7.5.2 Bit Manipulation operations

Table 7.14: Bit Manipulation operations
Mnemonic Description
cv.extract rD, rs1, Is3, Is2 rD = Sext(rs1[min(Is3+Is2,31):Is2])

Note: Sign extension is done over the MSB of the extracted part.
cv.extractu rD, rs1, Is3, Is2 rD = Zext(rs1[min(Is3+Is2,31):Is2])
cv.extractr rD, rs1, rs2 rD = Sext(rs1[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]])

Note: Sign extension is done over the MSB of the extracted part.
cv.extractur rD, rs1, rs2 rD = Zext(rs1[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]])
cv.insert rD, rs1, Is3, Is2 rD[min(Is3+Is2,31):Is2] = rs1[Is3-(max(Is3+Is2,31)-31):0]

The rest of the bits of rD are untouched and keep their previous value.
Is3 + Is2 must be < 32.

cv.insertr rD, rs1, rs2 rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] =
rs1[rs2[9:5]-(max(rs2[9:5]+rs2[4:0],31)-31):0]
The rest of the bits of rD are untouched and keep their previous value.
Is3 + Is2 must be < 32.

cv.bclr rD, rs1, Is3, Is2 rD[min(Is3+Is2,31):Is2] bits set to 0
The rest of the bits of rD are passed through from rs1 and are not modified.

cv.bclrr rD, rs1, rs2 rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] bits set to 0
The rest of the bits of rD are passed through from rs1 and are not modified.

cv.bset rD, rs1, Is3, Is2 rD[min(Is3+Is2,31):Is2] bits set to 1
The rest of the bits of rD are passed through from rs1 and are not modified.

cv.bsetr rD, rs1, rs2 rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] bits set to 1
The rest of the bits of rD are passed through from rs1 and are not modified.

cv.ff1 rD, rs1 rD = bit position of the first bit set in rs1, starting from LSB.
If bit 0 is set, rD will be 0. If only bit 31 is set, rD will be 31.
If rs1 is 0, rD will be 32.

cv.fl1 rD, rs1 rD = bit position of the last bit set in rs1, starting from MSB.
If bit 31 is set, rD will be 31. If only bit 0 is set, rD will be 0.
If rs1 is 0, rD will be 32.

cv.clb rD, rs1 rD = count leading bits of rs1
Number of consecutive 1’s or 0’s starting from MSB.
If rs1 is 0, rD will be 0. If rs1 is different than 0, returns (number - 1).

cv.cnt rD, rs1 rD = Population count of rs1
Number of bits set in rs1.

cv.ror rD, rs1, rs2 rD = RotateRight(rs1, rs2)
cv.bitrev rD, rs1, Is3, Is2 Given an input rs1 it returns a bit reversed representation assuming

FFT on 2^Is2 points in Radix 2^(Is3+1).
Is3 can be either 0 (radix-2), 1 (radix-4) or 2 (radix-8).
Note: When Is3 = 3, instruction has the same bahavior as if it was 0 (radix-2).

32 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

7.5.3 Bit Manipulation Encoding

Table 7.15: Immediate Bit Manipulation operations encoding
31:
30

29 : 25 24 : 20 19
:
15

14 :
12

11 :
7

6 : 0

f2 ls3[4:0] ls2[4:0] rs1 funct3 rD opcode Mnemonic
00 Luimm5[4:0] Iuimm5[4:0] src 000 dest 101 1011 cv.extract rD, rs1, Is3, Is2
01 Luimm5[4:0] Iuimm5[4:0] src 000 dest 101 1011 cv.extractu rD, rs1, Is3, Is2
10 Luimm5[4:0] Iuimm5[4:0] src 000 dest 101 1011 cv.insert rD, rs1, Is3, Is2
00 Luimm5[4:0] Iuimm5[4:0] src 001 dest 101 1011 cv.bclr rD, rs1, Is3, Is2
01 Luimm5[4:0] Iuimm5[4:0] src 001 dest 101 1011 cv.bset rD, rs1, Is3, Is2
11 000,

Luimm2[1:0]
Iuimm5[4:0] src 001 dest 101 1011 cv.bitrev rD, rs1, Is3, Is2

Table 7.16: Register Bit Manipulation operations encoding
31 : 25 24 : 20 19

:
15

14 :
12

11 :
7

6 : 0

funct7 rs2 rs1 funct3 rD opcode
001 1000 src2 src1 011 dest 010 1011 cv.extractr rD, rs1, rs2
001 1001 src2 src1 011 dest 010 1011 cv.extractur rD, rs1, rs2
001 1010 src2 src1 011 dest 010 1011 cv.insertr rD, rs1, rs2
001 1100 src2 src1 011 dest 010 1011 cv.bclrr rD, rs1, rs2
001 1101 src2 scr1 011 dest 010 1011 cv.bsetr rD, rs1, rs2
010 0000 src2 src1 011 dest 010 1011 cv.ror rD, rs1, rs2
010 0001 00000 src1 011 dest 010 1011 cv.ff1 rD, rs1
010 0010 00000 src1 011 dest 010 1011 cv.fl1 rD, rs1
010 0011 00000 src1 011 dest 010 1011 cv.clb rD, rs1
010 0100 00000 src1 011 dest 010 1011 cv.cnt rD, rs1

7.5.4 General ALU operations

Table 7.17: General ALU operations
Mnemonic Description
cv.abs rD, rs1 rD = rs1 < 0 ? -rs1 : rs1
cv.sle rD, rs1, rs2 rD = rs1 <= rs2 ? 1 : 0

Note: Comparison is signed.
cv.sleu rD, rs1, rs2 rD = rs1 <= rs2 ? 1 : 0

Note: Comparison is unsigned.
cv.min rD, rs1, rs2 rD = rs1 < rs2 ? rs1 : rs2

Note: Comparison is signed.
cv.minu rD, rs1, rs2 rD = rs1 < rs2 ? rs1 : rs2

Note: Comparison is unsigned.
cv.max rD, rs1, rs2 rD = rs1 < rs2 ? rs2 : rs1

Note: Comparison is signed.
cv.maxu rD, rs1, rs2 rD = rs1 < rs2 ? rs2 : rs1

Note: Comparison is unsigned.
continues on next page

7.5. ALU 33

CV32E40P User Manual

Table 7.17 – continued from previous page
Mnemonic Description
cv.exths rD, rs1 rD = Sext(rs1[15:0])
cv.exthz rD, rs1 rD = Zext(rs1[15:0])
cv.extbs rD, rs1 rD = Sext(rs1[7:0])
cv.extbz rD, rs1 rD = Zext(rs1[7:0])
cv.clip rD, rs1, Is2 if rs1 <= -2^(Is2-1), rD = -2^(Is2-1),

else if rs1 >= 2^(Is2-1)-1, rD = 2^(Is2-1)-1,
else rD = rs1
Note: If ls2 is equal to 0,
-2^(Is2-1) is equivalent to -1 while (2^(Is2-1)-1) is equivalent to 0.

cv.clipu rD, rs1, Is2 if rs1 <= 0, rD = 0,
else if rs1 >= 2^(Is2-1)-1, rD = 2^(Is2-1)-1,
else rD = rs1
Note: If ls2 is equal to 0, (2^(Is2-1)-1) is equivalent to 0.

cv.clipr rD, rs1, rs2 if rs1 <= -(rs2+1), rD = -(rs2+1),
else if rs1 >=rs2, rD = rs2,
else rD = rs1

cv.clipur rD, rs1, rs2 if rs1 <= 0, rD = 0,
else if rs1 >= rs2, rD = rs2,
else rD = rs1

cv.addN rD, rs1, rs2, Is3 rD = (rs1 + rs2) >>> Is3
Note: Arithmetic shift right.
Setting Is3 to 1 replaces former cv.avg.

cv.adduN rD, rs1, rs2, Is3 rD = (rs1 + rs2) >> Is3
Note: Logical shift right.
Setting Is3 to 1 replaces former cv.avgu.

cv.addRN rD, rs1, rs2, Is3 rD = (rs1 + rs2 + 2^(Is3-1)) >>> Is3
Note: Arithmetic shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.adduRN rD, rs1, rs2, Is3 rD = (rs1 + rs2 + 2^(Is3-1))) >> Is3
Note: Logical shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.subN rD, rs1, rs2, Is3 rD = (rs1 - rs2) >>> Is3
Note: Arithmetic shift right.

cv.subuN rD, rs1, rs2, Is3 rD = (rs1 - rs2) >> Is3
Note: Logical shift right.

cv.subRN rD, rs1, rs2, Is3 rD = (rs1 - rs2 + 2^(Is3-1)) >>> Is3
Note: Arithmetic shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.subuRN rD, rs1, rs2, Is3 rD = (rs1 - rs2 + 2^(Is3-1))) >> Is3
Note: Logical shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.addNr rD, rs1, rs2 rD = (rD + rs1) >>> rs2[4:0]
Note: Arithmetic shift right.

cv.adduNr rD, rs1, rs2 rD = (rD + rs1) >> rs2[4:0]
Note: Logical shift right.

cv.addRNr rD, rs1, rs2 rD = (rD + rs1 + 2^(rs2[4:0]-1)) >>> rs2[4:0]
Note: Arithmetic shift right.
If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0.

continues on next page

34 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

Table 7.17 – continued from previous page
Mnemonic Description
cv.adduRNr rD, rs1, rs2 rD = (rD + rs1 + 2^(rs2[4:0]-1))) >> rs2[4:0]

Note: Logical shift right.
If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0.

cv.subNr rD, rs1, rs2 rD = (rD - rs1) >>> rs2[4:0]
Note: Arithmetic shift right.

cv.subuNr rD, rs1, rs2 rD = (rD - rs1) >> rs2[4:0]
Note: Logical shift right.

cv.subRNr rD, rs1, rs2 rD = (rD - rs1+ 2^(rs2[4:0]-1)) >>> rs2[4:0]
Note: Arithmetic shift right.
If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0.

cv.subuRNr rD, rs1, rs2 rD = (rD - rs1+ 2^(rs2[4:0]-1))) >> rs2[4:0]
Note: Logical shift right.
If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0.

7.5.5 General ALU Encoding

Table 7.18: General ALU operations encoding
31 : 25 24 : 20 19 :

15
14 :
12

11 : 7 6 : 0

funct7 rs2 rs1 funct3 rD opcode
010 1000 00000 src1 011 dest 010 1011 cv.abs rD, rs1
010 1001 src2 src1 011 dest 010 1011 cv.sle rD, rs1, rs2
010 1010 src2 src1 011 dest 010 1011 cv.sleu rD, rs1, rs2
010 1011 src2 src1 011 dest 010 1011 cv.min rD, rs1, rs2
010 1100 src2 src1 011 dest 010 1011 cv.minu rD, rs1, rs2
010 1101 src2 src1 011 dest 010 1011 cv.max rD, rs1, rs2
010 1110 src2 src1 011 dest 010 1011 cv.maxu rD, rs1, rs2
011 0000 00000 src1 011 dest 010 1011 cv.exths rD, rs1
011 0001 00000 src1 011 dest 010 1011 cv.exthz rD, rs1
011 0010 00000 src1 011 dest 010 1011 cv.extbs rD, rs1
011 0011 00000 src1 011 dest 010 1011 cv.extbz rD, rs1

Table 7.19: General ALU operations encoding
31 : 25 24 : 20 19 :

15
14 :
12

11 : 7 6 : 0

funct7 Is2[4:0] rs1 funct3 rD opcode
011 1000 Iuimm5[4:0] src1 011 dest 010 1011 cv.clip rD, rs1, Is2
011 1001 Iuimm5[4:0] src1 011 dest 010 1011 cv.clipu rD, rs1, Is2
011 1010 src2 src1 011 dest 010 1011 cv.clipr rD, rs1, rs2
011 1011 src2 src1 011 dest 010 1011 cv.clipur rD, rs1, rs2

7.5. ALU 35

CV32E40P User Manual

Table 7.20: General ALU operations encoding
31:
30

29 : 25 24 : 20 19 :
15

14 :
12

11 : 7 6 : 0

f2 Is3[4:0] rs2 rs1 funct3 rD opcode
00 Luimm5[4:0] src2 src1 010 dest 101 1011 cv.addN rD, rs1, rs2, Is3
01 Luimm5[4:0] src2 src1 010 dest 101 1011 cv.adduN rD, rs1, rs2, Is3
10 Luimm5[4:0] src2 src1 010 dest 101 1011 cv.addRN rD, rs1, rs2, Is3
11 Luimm5[4:0] src2 src1 010 dest 101 1011 cv.adduRN rD, rs1, rs2, Is3
00 Luimm5[4:0] src2 src1 011 dest 101 1011 cv.subN rD, rs1, rs2, Is3
01 Luimm5[4:0] src2 src1 011 dest 101 1011 cv.subuN rD, rs1, rs2, Is3
10 Luimm5[4:0] src2 src1 011 dest 101 1011 cv.subRN rD, rs1, rs2, Is3
11 Luimm5[4:0] src2 src1 011 dest 101 1011 cv.subuRN rD, rs1, rs2, Is3

Table 7.21: General ALU operations encoding
31 : 25 24 : 20 19 :

15
14 :
12

11 : 7 6 : 0

funct7 Is3[4:0] rs1 funct3 rD opcode
100 0000 src2 src1 011 dest 010 1011 cv.addNr rD, rs1, rs2
100 0001 src2 src1 011 dest 010 1011 cv.adduNr rD, rs1, rs
100 0010 src2 src1 011 dest 010 1011 cv.addRNr rD, rs1, rs
100 0011 src2 src1 011 dest 010 1011 cv.adduRNr rD, rs1, rs2
100 0100 src2 src1 011 dest 010 1011 cv.subNr rD, rs1, rs2
100 0101 src2 src1 011 dest 010 1011 cv.subuNr rD, rs1, rs2
100 0110 src2 src1 011 dest 010 1011 cv.subRNr rD, rs1, rs2
100 0111 src2 src1 011 dest 010 1011 cv.subuRNr rD, rs1, rs2

7.5.6 Immediate Branching operations

Table 7.22: Immediate Branching operations
Mnemonic Description
cv.beqimm rs1, Imm5, Imm12 Branch to PC + (Imm12 << 1) if rs1 is equal to Imm5.

Note: Imm5 is signed.
cv.bneimm rs1, Imm5, Imm12 Branch to PC + (Imm12 << 1) if rs1 is not equal to Imm5.

Note: Imm5 is signed.

7.5.7 Immediate Branching Encoding

Table 7.23: Immediate Branching encoding
31 30 : 25 24 :

20
19 :
15

14 :
12

11 : 8 7 6 : 0

Imm12[12] Imm12[10:5] Imm5 rs1 funct3 Imm12 Imm12 opcode
Imm12[12] Imm12[10:5] Imm5 src1 110 Imm12[4:1] Imm12[11] 000 1011 cv.beqimm

rs1, Imm5,
Imm12

Imm12[12] Imm12[10:5] Imm5 src1 111 Imm12[4:1] Imm12[11] 000 1011 cv.bneimm
rs1, Imm5,
Imm12

36 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

7.6 Multiply-Accumulate

CV32E40P supports custom extensions for multiply-accumulate and half-word multiplications with an optional post-
multiplication shift.

The custom multiply-accumulate extensions are only supported if COREV_PULP == 1.

7.6.1 16-Bit x 16-Bit Multiplication operations

Table 7.24: 16-Bit Multiplication operations
Mnemonic Description
cv.muluN rD, rs1, rs2, Is3 rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0])) >> Is3

Note: Logical shift right.
cv.mulhhuN rD, rs1, rs2, Is3 rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16])) >> Is3

Note: Logical shift right.
cv.mulsN rD, rs1, rs2, Is3 rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0])) >>> Is3

Note: Arithmetic shift right.
cv.mulhhsN rD, rs1, rs2, Is3 rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16])) >>> Is3

Note: Arithmetic shift right.
cv.muluRN rD, rs1, rs2, Is3 rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + 2^(Is3-1)) >> Is3

Note: Logical shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.mulhhuRN rD, rs1, rs2, Is3 rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + 2^(Is3-1)) >> Is3
Note: Logical shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.mulsRN rD, rs1, rs2, Is3 rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + 2^(Is3-1)) >>> Is3
Note: Arithmetic shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.mulhhsRN rD, rs1, rs2, Is3 rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + 2^(Is3-1)) >>> Is3
Note: Arithmetic shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

7.6.2 16-Bit x 16-Bit Multiplication pseudo-instructions

Table 7.25: 16-Bit Multiplication pseudo-instructions
Mnemonic Base Instruction Description
cv.mulu rD, rs1, rs2 cv.muluN rD, rs1, rs2, 0 rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0])) >> 0

Note: Logical shift right.
cv.mulhhu rD, rs1, rs2 cv.mulhhuN rD, rs1, rs2, 0 rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16])) >> 0

Note: Logical shift right.
cv.muls rD, rs1, rs2 cv.mulsN rD, rs1, rs2, 0 rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0])) >> 0

Note: Arithmetic shift right.
cv.mulhhs rD, rs1, rs2 cv.mulhhsN rD, rs1, rs2, 0 rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16])) >> 0

Note: Arithmetic shift right.

7.6. Multiply-Accumulate 37

CV32E40P User Manual

7.6.3 16-Bit x 16-Bit Multiply-Accumulate operations

Table 7.26: 16-Bit Multiply-Accumulate operations
Mnemonic Description
cv.macuN rD, rs1, rs2, Is3 rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + rD) >> Is3

Note: Logical shift right.
cv.machhuN rD, rs1, rs2, Is3 rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + rD) >> Is3

Note: Logical shift right.
cv.macsN rD, rs1, rs2, Is3 rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + rD) >>> Is3

Note: Arithmetic shift right.
cv.machhsN rD, rs1, rs2, Is3 rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + rD) >>> Is3

Note: Arithmetic shift right.
cv.macuRN rD, rs1, rs2, Is3 rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + rD + 2^(Is3-1)) >> Is3

Note: Logical shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.machhuRN rD, rs1, rs2, Is3 rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + rD + 2^(Is3-1)) >> Is3
Note: Logical shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.macsRN rD, rs1, rs2, Is3 rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + rD + 2^(Is3-1)) >>> Is3
Note: Arithmetic shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.machhsRN rD, rs1, rs2, Is3 rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + rD + 2^(Is3-1)) >>> Is3
Note: Arithmetic shift right.
If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

7.6.4 32-Bit x 32-Bit Multiply-Accumulate operations

Table 7.27: 32-Bit Multiply-Accumulate operations
Mnemonic Description
cv.mac rD, rs1, rs2 rD = rD + rs1 * rs2
cv.msu rD, rs1, rs2 rD = rD - rs1 * rs2

7.6.5 Encoding

Table 7.28: 16-Bit Multiplication operations
31:
30

29 : 25 24 :
20

19 :
15

14 : 12 11 :
7

6 : 0

f2 Is3[4:0] rs2 rs1 funct3 rD opcode
00 Luimm5[4:0] src2 src1 101 dest 101 1011 cv.muluN rD, rs1, rs2, Is3
01 Luimm5[4:0] src2 src1 101 dest 101 1011 cv.mulhhuN rD, rs1, rs2, Is3
00 Luimm5[4:0] src2 src1 100 dest 101 1011 cv.mulsN rD, rs1, rs2, Is3
01 Luimm5[4:0] src2 src1 100 dest 101 1011 cv.mulhhsN rD, rs1, rs2, Is3
10 Luimm5[4:0] src2 src1 101 dest 101 1011 cv.muluRN rD, rs1, rs2, Is3
11 Luimm5[4:0] src2 src1 101 dest 101 1011 cv.mulhhuRN rD, rs1, rs2, Is3
10 Luimm5[4:0] src2 src1 100 dest 101 1011 cv.mulsRN rD, rs1, rs2, Is3
11 Luimm5[4:0] src2 src1 100 dest 101 1011 cv.mulhhsRN rD, rs1, rs2, Is3

38 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

Table 7.29: 16-Bit Multiply-Accumulate operations
31:
30

29 : 25 24 :
20

19 :
15

14 : 12 11 :
7

6 : 0

f2 Is3[4:0] rs2 rs1 funct3 rD opcode
00 Luimm5[4:0] src2 src1 111 dest 101 1011 cv.macuN rD, rs1, rs2, Is3
01 Luimm5[4:0] src2 src1 111 dest 101 1011 cv.machhuN rD, rs1, rs2, Is3
00 Luimm5[4:0] src2 src1 110 dest 101 1011 cv.macsN rD, rs1, rs2, Is3
01 Luimm5[4:0] src2 src1 110 dest 101 1011 cv.machhsN rD, rs1, rs2, Is3
10 Luimm5[4:0] src2 src1 111 dest 101 1011 cv.macuRN rD, rs1, rs2, Is3
11 Luimm5[4:0] src2 src1 111 dest 101 1011 cv.machhuRN rD, rs1, rs2, Is3
10 Luimm5[4:0] src2 src1 110 dest 101 1011 cv.macsRN rD, rs1, rs2, Is3
11 Luimm5[4:0] src2 src1 110 dest 101 1011 cv.machhsRN rD, rs1, rs2, Is3

Table 7.30: 32-Bit Multiply-Accumulate operations
31 : 25 24 :

20
19 :
15

14 : 12 11 :
7

6 : 0

funct7 rs2 rs1 funct3 rD opcode
100 1000 src2 src1 011 dest 010 1011 cv.mac rD, rs1, rs2
100 1001 src2 src1 011 dest 010 1011 cv.msu rD, rs1, rs2

7.7 SIMD

The SIMD instructions perform operations on multiple sub-word elements at the same time. This is done by segmenting
the data path into smaller parts when 8- or 16-bit operations should be performed.

The custom SIMD extensions are only supported if COREV_PULP == 1.

Note: See the comments at the start of CORE-V Instruction Set Custom Extensions on availability of the compiler tool
chains. Support for SIMD will be primarily through assembly code and builtin functions, with no auto-vectorization
and limited other optimization. Simple auto-vectorization (add, sub. . .) and optimization will be evaluated once a
stable GCC toolchain is available.

SIMD instructions are available in two flavors:

• 8-Bit, to perform four operations on the 4 bytes inside a 32-bit word at the same time (.b)

• 16-Bit, to perform two operations on the 2 half-words inside a 32-bit word at the same time (.h)

All the operations are rounded to the specified bidwidth as for the original RISC-V arithmetic operations. This is
described by the “and” operation with a MASK. No overflow or carry-out flags are generated as for the 32-bit operations.

Additionally, there are three modes that influence the second operand:

1. Normal mode, vector-vector operation. Both operands, from rs1 and rs2, are treated as vectors of bytes or half-
words.

e.g. cv.add.h x3,x2,x1 performs:

x3[31:16] = x2[31:16] + x1[31:16]

x3[15: 0] = x2[15: 0] + x1[15: 0]

7.7. SIMD 39

CV32E40P User Manual

2. Scalar replication mode (.sc), vector-scalar operation. Operand 1 is treated as a vector, while operand 2 is treated
as a scalar and replicated two or four times to form a complete vector. The LSP is used for this purpose.

e.g. cv.add.sc.h x3,x2,x1 performs:

x3[31:16] = x2[31:16] + x1[15: 0]

x3[15: 0] = x2[15: 0] + x1[15: 0]

3. Immediate scalar replication mode (.sci), vector-scalar operation. Operand 1 is treated as vector, while operand
2 is treated as a scalar and comes from a 6-bit immediate.

The immediate is either sign- or zero-extended depending on the operation. If not specified, the immediate is
sign-extended with the exception of all cv.shuffle* where it is always unsigned.

e.g. cv.add.sci.h x3,x2,-22 performs:

x3[31:16] = x2[31:16] + 0xFFEA

x3[15: 0] = x2[15: 0] + 0xFFEA

And finally for all the SIMD Bit Manipulation instructions, Imm6 is zero-extended.

In the following tables, the index i ranges from 0 to 1 for 16-Bit operations and from 0 to 3 for 8-Bit operations:

• The index 0 is 15:0 for 16-Bit operations or 7:0 for 8-Bit operations.

• The index 1 is 31:16 for 16-Bit operations or 15:8 for 8-Bit operations.

• The index 2 is 23:16 for 8-Bit operations.

• The index 3 is 31:24 for 8-Bit operations.

And I5, I4, I3, I2, I1 and I0 respectively represent bits 5, 4, 3, 2, 1 and 0 of the immediate value.

40 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

7.7.1 SIMD ALU operations

Table 7.31: SIMD ALU operations
Mnemonic Description
cv.add[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = (rs1[i] + op2[i]) & 0xFFFF
cv.sub[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = (rs1[i] - op2[i]) & 0xFFFF
cv.avg[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = ((rs1[i] + op2[i]) & {0xFFFF, 0xFF}) >> 1

Note: Arithmetic right shift.
cv.avgu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = ((rs1[i] + op2[i]) & {0xFFFF, 0xFF}) >> 1

Note: Immediate is zero-extended, shift is logical.
cv.min[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] < op2[i] ? rs1[i] : op2[i]
cv.minu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] < op2[i] ? rs1[i] : op2[i]

Note: Immediate is zero-extended, comparison is un-
signed.

cv.max[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] > op2[i] ? rs1[i] : op2[i]
cv.maxu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] > op2[i] ? rs1[i] : op2[i]

Note: Immediate is zero-extended, comparison is un-
signed.

cv.srl[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] >> op2[i]
Note: Immediate is zero-extended, shift is logical.
Only Imm6[3:0] and rs2[3:0] are used for .h instruction
and Imm6[2:0] and rs2[2:0] for .b instruction.
Other bits are not used and must be set to 0.

cv.sra[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] >>> op2[i]
Note: Immediate is zero-extended, shift is arithmetic.
Only Imm6[3:0] and rs2[3:0] are used for .h instruction
and Imm6[2:0] and rs2[2:0] for .b instruction.
Other bits are not used and must be set to 0.

cv.sll[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] << op2[i]
Note: Immediate is zero-extended, shift is logical.
Only Imm6[3:0] and rs2[3:0] are used for .h instruction
and Imm6[2:0] and rs2[2:0] for .b instruction.
Other bits are not used and must be set to 0.

cv.or[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] | op2[i]
cv.xor[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] ^ op2[i]
cv.and[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] & op2[i]
cv.abs{.h,.b} rD, rs1 rD[i] = rs1[i] < 0 ? -rs1[i] : rs1[i]

7.7. SIMD 41

CV32E40P User Manual

SIMD Bit Manipulation operations

Table 7.32: SIMD Bit Manipulation operations
Mnemonic Description
cv.extract.h rD, rs1, Imm6 rD = Sext(rs1[I0*16+15:I0*16])
cv.extract.b rD, rs1, Imm6 rD = Sext(rs1[(I1:I0)*8+7:(I1:I0)*8])
cv.extractu.h rD, rs1, Imm6 rD = Zext(rs1[I0*16+15:I0*16])
cv.extractu.b rD, rs1, Imm6 rD = Zext(rs1[(I1:I0)*8+7:(I1:I0)*8])
cv.insert.h rD, rs1, Imm6 rD[I0*16+15:I0*16] = rs1[15:0]

Note: The rest of the bits of rD are untouched and keep
their previous value.

cv.insert.b rD, rs1, Imm6 rD[(I1:I0)*8+7:(I1:I0)*8] = rs1[7:0]
Note: The rest of the bits of rD are untouched and keep
their previous value.

42 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

SIMD Dot Product operations

Table 7.33: SIMD Dot Product operations
Mnemonic Description
cv.dotup[.sc,.sci].h rD, rs1, [rs2, Imm6] rD = rs1[0] * op2[0] + rs1[1] * op2[1]

Note: All operands are unsigned.
cv.dotup[.sc,.sci].b rD, rs1, [rs2, Imm6] rD = rs1[0] * op2[0] + rs1[1] * op2[1] +

rs1[2] * op2[2] + rs1[3] * op2[3]
Note: All operands are unsigned.

cv.dotusp[.sc,.sci].h rD, rs1, [rs2, Imm6] rD = rs1[0] * op2[0] + rs1[1] * op2[1]
Note: rs1 is treated as unsigned, while op2 is treated as
signed.

cv.dotusp[.sc,.sci].b rD, rs1, [rs2, Imm6] rD = rs1[0] * op2[0] + rs1[1] * op2[1] +
rs1[2] * op2[2] + rs1[3] * op2[3]
Note: rs1 is treated as unsigned, while op2 is treated as
signed.

cv.dotsp[.sc,.sci].h rD, rs1, [rs2, Imm6] rD = rs1[0] * op2[0] + rs1[1] * op2[1]
Note: All operands are signed.

cv.dotsp[.sc,.sci].b rD, rs1, [rs2, Imm6] rD = rs1[0] * op2[0] + rs1[1] * op2[1] +
rs1[2] * op2[2] + rs1[3] * op2[3]
Note: All operands are signed.

cv.sdotup[.sc,.sci].h rD, rs1, [rs2, Imm6] rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]
Note: All operands are unsigned.

cv.sdotup[.sc,.sci].b rD, rs1, [rs2, Imm6] rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] +
rs1[2] * op2[2] + rs1[3] * op2[3]
Note: All operands are unsigned.

cv.sdotusp[.sc,.sci].h rD, rs1, [rs2, Imm6] rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]
Note: rs1 is treated as unsigned while op2 is treated as
signed.

cv.sdotusp[.sc,.sci].b rD, rs1, [rs2, Imm6] rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] +
rs1[2] * op2[2] + rs1[3] * op2[3]
Note: rs1 is treated as unsigned while op2 is treated as
signed.

cv.sdotsp[.sc,.sci].h rD, rs1, [rs2, Imm6] rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]
Note: All operands are signed.

cv.sdotsp[.sc,.sci].b rD, rs1, [rs2, Imm6] rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] +
rs1[2] * op2[2] + rs1[3] * op2[3]
Note: All operands are signed.

7.7. SIMD 43

CV32E40P User Manual

SIMD Shuffle and Pack operations

Table 7.34: SIMD Shuffle and Pack operations
Mnemonic Description
cv.shuffle.h rD, rs1, rs2 rD[31:16] = rs1[rs2[16]*16+15:rs2[16]*16]

rD[15:0] = rs1[rs2[0]*16+15:rs2[0]*16]
cv.shuffle.sci.h rD, rs1, Imm6 rD[31:16] = rs1[I1*16+15:I1*16]

rD[15:0] = rs1[I0*16+15:I0*16]
cv.shuffle.b rD, rs1, rs2 rD[31:24] = rs1[rs2[25:24]*8+7:rs2[25:24]*8]

rD[23:16] = rs1[rs2[17:16]*8+7:rs2[17:16]*8]
rD[15:8] = rs1[rs2[9:8]*8+7:rs2[9:8]*8]
rD[7:0] = rs1[rs2[1:0]*8+7:rs2[1:0]*8]

cv.shuffleI0.sci.b rD, rs1, Imm6 rD[31:24] = rs1[7:0]
rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]
rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]
rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

cv.shuffleI1.sci.b rD, rs1, Imm6 rD[31:24] = rs1[15:8]
rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]
rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]
rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

cv.shuffleI2.sci.b rD, rs1, Imm6 rD[31:24] = rs1[23:16]
rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]
rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]
rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

cv.shuffleI3.sci.b rD, rs1, Imm6 rD[31:24] = rs1[31:24]
rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]
rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]
rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

cv.shuffle2.h rD, rs1, rs2 rD[31:16] = ((rs2[17] == 1) ? rs1 : rD)[rs2[16]*16+15:rs2[16]*16]
rD[15:0] = ((rs2[1] == 1) ? rs1 : rD)[rs2[0]*16+15:rs2[0]*16]

cv.shuffle2.b rD, rs1, rs2 rD[31:24] = ((rs2[26] == 1) ? rs1 : rD)[rs2[25:24]*8+7:rs2[25:24]*8]
rD[23:16] = ((rs2[18] == 1) ? rs1 : rD)[rs2[17:16]*8+7:rs2[17:16]*8]
rD[15:8] = ((rs2[10] == 1) ? rs1 : rD)[rs2[9:8]*8+7:rs2[9:8]*8]
rD[7:0] = ((rs2[2] == 1) ? rs1 : rD)[rs2[1:0]*8+7:rs2[1:0]*8]

cv.pack rD, rs1, rs2 rD[31:16] = rs1[15:0]
rD[15:0] = rs2[15:0]

cv.pack.h rD, rs1, rs2 rD[31:16] = rs1[31:16]
rD[15:0] = rs2[31:16]

cv.packhi.b rD, rs1, rs2 rD[31:24] = rs1[7:0]
rD[23:16] = rs2[7:0]
Note: The rest of the bits of rD are untouched and keep their previous
value.

cv.packlo.b rD, rs1, rs2 rD[15:8] = rs1[7:0]
rD[7:0] = rs2[7:0]
Note: The rest of the bits of rD are untouched and keep their previous
value.

44 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

SIMD ALU Encoding

Table 7.35: SIMD ALU encoding
31 : 27 26 25 24 :

20
19 :
15

14 :
12

11 : 7 6 : 0

funct5 F rs2 rs1 funct3 rD opcode
0 0000 0 0 src2 src1 000 dest 111 1011 cv.add.h rD, rs1, rs2
0 0000 0 0 src2 src1 100 dest 111 1011 cv.add.sc.h rD, rs1, rs2
0 0000 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.add.sci.h rD, rs1, Imm6
0 0000 0 0 src2 src1 001 dest 111 1011 cv.add.b rD, rs1, rs2
0 0000 0 0 src2 src1 101 dest 111 1011 cv.add.sc.b rD, rs1, rs2
0 0000 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.add.sci.b rD, rs1, Imm6
0 0001 0 0 src2 src1 000 dest 111 1011 cv.sub.h rD, rs1, rs2
0 0001 0 0 src2 src1 100 dest 111 1011 cv.sub.sc.h rD, rs1, rs2
0 0001 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.sub.sci.h rD, rs1, Imm6
0 0001 0 0 src2 src1 001 dest 111 1011 cv.sub.b rD, rs1, rs2
0 0001 0 0 src2 src1 101 dest 111 1011 cv.sub.sc.b rD, rs1, rs2
0 0001 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.sub.sci.b rD, rs1, Imm6
0 0010 0 0 src2 src1 000 dest 111 1011 cv.avg.h rD, rs1, rs2
0 0010 0 0 src2 src1 100 dest 111 1011 cv.avg.sc.h rD, rs1, rs2
0 0010 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.avg.sci.h rD, rs1, Imm6
0 0010 0 0 src2 src1 001 dest 111 1011 cv.avg.b rD, rs1, rs2
0 0010 0 0 src2 src1 101 dest 111 1011 cv.avg.sc.b rD, rs1, rs2
0 0010 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.avg.sci.b rD, rs1, Imm6
0 0011 0 0 src2 src1 000 dest 111 1011 cv.avgu.h rD, rs1, rs2
0 0011 0 0 src2 src1 100 dest 111 1011 cv.avgu.sc.h rD, rs1, rs2
0 0011 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.avgu.sci.h rD, rs1, Imm6
0 0011 0 0 src2 src1 001 dest 111 1011 cv.avgu.b rD, rs1, rs2
0 0011 0 0 src2 src1 101 dest 111 1011 cv.avgu.sc.b rD, rs1, rs2
0 0011 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.avgu.sci.b rD, rs1, Imm6
0 0100 0 0 src2 src1 000 dest 111 1011 cv.min.h rD, rs1, rs2
0 0100 0 0 src2 src1 100 dest 111 1011 cv.min.sc.h rD, rs1, rs2
0 0100 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.min.sci.h rD, rs1, Imm6
0 0100 0 0 src2 src1 001 dest 111 1011 cv.min.b rD, rs1, rs2
0 0100 0 0 src2 src1 101 dest 111 1011 cv.min.sc.b rD, rs1, rs2
0 0100 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.min.sci.b rD, rs1, Imm6
0 0101 0 0 src2 src1 000 dest 111 1011 cv.minu.h rD, rs1, rs2
0 0101 0 0 src2 src1 100 dest 111 1011 cv.minu.sc.h rD, rs1, rs2
0 0101 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.minu.sci.h rD, rs1, Imm6
0 0101 0 0 src2 src1 001 dest 111 1011 cv.minu.b rD, rs1, rs2
0 0101 0 0 src2 src1 101 dest 111 1011 cv.minu.sc.b rD, rs1, rs2
0 0101 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.minu.sci.b rD, rs1, Imm6
0 0110 0 0 src2 src1 000 dest 111 1011 cv.max.h rD, rs1, rs2
0 0110 0 0 src2 src1 100 dest 111 1011 cv.max.sc.h rD, rs1, rs2
0 0110 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.max.sci.h rD, rs1, Imm6
0 0110 0 0 src2 src1 001 dest 111 1011 cv.max.b rD, rs1, rs2
0 0110 0 0 src2 src1 101 dest 111 1011 cv.max.sc.b rD, rs1, rs2
0 0110 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.max.sci.b rD, rs1, Imm6
0 0111 0 0 src2 src1 000 dest 111 1011 cv.maxu.h rD, rs1, rs2
0 0111 0 0 src2 src1 100 dest 111 1011 cv.maxu.sc.h rD, rs1, rs2

continues on next page

7.7. SIMD 45

CV32E40P User Manual

Table 7.35 – continued from previous page
31 : 27 26 25 24 :

20
19 :
15

14 :
12

11 : 7 6 : 0

funct5 F rs2 rs1 funct3 rD opcode
0 0111 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.maxu.sci.h rD, rs1, Imm6
0 0111 0 0 src2 src1 001 dest 111 1011 cv.maxu.b rD, rs1, rs2
0 0111 0 0 src2 src1 101 dest 111 1011 cv.maxu.sc.b rD, rs1, rs2
0 0111 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.maxu.sci.b rD, rs1, Imm6
0 1000 0 0 src2 src1 000 dest 111 1011 cv.srl.h rD, rs1, rs2
0 1000 0 0 src2 src1 100 dest 111 1011 cv.srl.sc.h rD, rs1, rs2
0 1000 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.srl.sci.h rD, rs1, Imm6
0 1000 0 0 src2 src1 001 dest 111 1011 cv.srl.b rD, rs1, rs2
0 1000 0 0 src2 src1 101 dest 111 1011 cv.srl.sc.b rD, rs1, rs2
0 1000 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.srl.sci.b rD, rs1, Imm6
0 1001 0 0 src2 src1 000 dest 111 1011 cv.sra.h rD, rs1, rs2
0 1001 0 0 src2 src1 100 dest 111 1011 cv.sra.sc.h rD, rs1, rs2
0 1001 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.sra.sci.h rD, rs1, Imm6
0 1001 0 0 src2 src1 001 dest 111 1011 cv.sra.b rD, rs1, rs2
0 1001 0 0 src2 src1 101 dest 111 1011 cv.sra.sc.b rD, rs1, rs2
0 1001 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.sra.sci.b rD, rs1, Imm6
0 1010 0 0 src2 src1 000 dest 111 1011 cv.sll.h rD, rs1, rs2
0 1010 0 0 src2 src1 100 dest 111 1011 cv.sll.sc.h rD, rs1, rs2
0 1010 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.sll.sci.h rD, rs1, Imm6
0 1010 0 0 src2 src1 001 dest 111 1011 cv.sll.b rD, rs1, rs2
0 1010 0 0 src2 src1 101 dest 111 1011 cv.sll.sc.b rD, rs1, rs2
0 1010 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.sll.sci.b rD, rs1, Imm6
0 1011 0 0 src2 src1 000 dest 111 1011 cv.or.h rD, rs1, rs2
0 1011 0 0 src2 src1 100 dest 111 1011 cv.or.sc.h rD, rs1, rs2
0 1011 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.or.sci.h rD, rs1, Imm6
0 1011 0 0 src2 src1 001 dest 111 1011 cv.or.b rD, rs1, rs2
0 1011 0 0 src2 src1 101 dest 111 1011 cv.or.sc.b rD, rs1, rs2
0 1011 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.or.sci.b rD, rs1, Imm6
0 1100 0 0 src2 src1 000 dest 111 1011 cv.xor.h rD, rs1, rs2
0 1100 0 0 src2 src1 100 dest 111 1011 cv.xor.sc.h rD, rs1, rs2
0 1100 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.xor.sci.h rD, rs1, Imm6
0 1100 0 0 src2 src1 001 dest 111 1011 cv.xor.b rD, rs1, rs2
0 1100 0 0 src2 src1 101 dest 111 1011 cv.xor.sc.b rD, rs1, rs2
0 1100 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.xor.sci.b rD, rs1, Imm6
0 1101 0 0 src2 src1 000 dest 111 1011 cv.and.h rD, rs1, rs2
0 1101 0 0 src2 src1 100 dest 111 1011 cv.and.sc.h rD, rs1, rs2
0 1101 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.and.sci.h rD, rs1, Imm6
0 1101 0 0 src2 src1 001 dest 111 1011 cv.and.b rD, rs1, rs2
0 1101 0 0 src2 src1 101 dest 111 1011 cv.and.sc.b rD, rs1, rs2
0 1101 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.and.sci.b rD, rs1, Imm6
0 1110 0 0 0 src1 000 dest 111 1011 cv.abs.h rD, rs1
0 1110 0 0 0 src1 001 dest 111 1011 cv.abs.b rD, rs1
1 0111 0 Imm6[0|5:1] src1 000 dest 111 1011 cv.extract.h rD, rs1, Imm6
1 0111 0 Imm6[0|5:1] src1 001 dest 111 1011 cv.extract.b rD, rs1, Imm6
1 0111 0 Imm6[0|5:1] src1 010 dest 111 1011 cv.extractu.h rD, rs1, Imm6
1 0111 0 Imm6[0|5:1] src1 011 dest 111 1011 cv.extractu.b rD, rs1, Imm6
1 0111 0 Imm6[0|5:1] src1 100 dest 111 1011 cv.insert.h rD, rs1, Imm6

continues on next page

46 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

Table 7.35 – continued from previous page
31 : 27 26 25 24 :

20
19 :
15

14 :
12

11 : 7 6 : 0

funct5 F rs2 rs1 funct3 rD opcode
1 0111 0 Imm6[0|5:1] src1 101 dest 111 1011 cv.insert.b rD, rs1, Imm6
1 0000 0 0 src2 src1 000 dest 111 1011 cv.dotup.h rD, rs1, rs2
1 0000 0 0 src2 src1 100 dest 111 1011 cv.dotup.sc.h rD, rs1, rs2
1 0000 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.dotup.sci.h rD, rs1, Imm6
1 0000 0 0 src2 src1 001 dest 111 1011 cv.dotup.b rD, rs1, rs2
1 0000 0 0 src2 src1 101 dest 111 1011 cv.dotup.sc.b rD, rs1, rs2
1 0000 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.dotup.sci.b rD, rs1, Imm6
1 0001 0 0 src2 src1 000 dest 111 1011 cv.dotusp.h rD, rs1, rs2
1 0001 0 0 src2 src1 100 dest 111 1011 cv.dotusp.sc.h rD, rs1, rs2
1 0001 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.dotusp.sci.h rD, rs1, Imm6
1 0001 0 0 src2 src1 001 dest 111 1011 cv.dotusp.b rD, rs1, rs2
1 0001 0 0 src2 src1 101 dest 111 1011 cv.dotusp.sc.b rD, rs1, rs2
1 0001 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.dotusp.sci.b rD, rs1, Imm6
1 0010 0 0 src2 src1 000 dest 111 1011 cv.dotsp.h rD, rs1, rs2
1 0010 0 0 src2 src1 100 dest 111 1011 cv.dotsp.sc.h rD, rs1, rs2
1 0010 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.dotsp.sci.h rD, rs1, Imm6
1 0010 0 0 src2 src1 001 dest 111 1011 cv.dotsp.b rD, rs1, rs2
1 0010 0 0 src2 src1 101 dest 111 1011 cv.dotsp.sc.b rD, rs1, rs2
1 0010 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.dotsp.sci.b rD, rs1, Imm6
1 0011 0 0 src2 src1 000 dest 111 1011 cv.sdotup.h rD, rs1, rs2
1 0011 0 0 src2 src1 100 dest 111 1011 cv.sdotup.sc.h rD, rs1, rs2
1 0011 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.sdotup.sci.h rD, rs1, Imm6
1 0011 0 0 src2 src1 001 dest 111 1011 cv.sdotup.b rD, rs1, rs2
1 0011 0 0 src2 src1 101 dest 111 1011 cv.sdotup.sc.b rD, rs1, rs2
1 0011 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.sdotup.sci.b rD, rs1, Imm6
1 0100 0 0 src2 src1 000 dest 111 1011 cv.sdotusp.h rD, rs1, rs2
1 0100 0 0 src2 src1 100 dest 111 1011 cv.sdotusp.sc.h rD, rs1, rs2
1 0100 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.sdotusp.sci.h rD, rs1, Imm6
1 0100 0 0 src2 src1 001 dest 111 1011 cv.sdotusp.b rD, rs1, rs2
1 0100 0 0 src2 src1 101 dest 111 1011 cv.sdotusp.sc.b rD, rs1, rs2
1 0100 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.sdotusp.sci.b rD, rs1, Imm6
1 0101 0 0 src2 src1 000 dest 111 1011 cv.sdotsp.h rD, rs1, rs2
1 0101 0 0 src2 src1 100 dest 111 1011 cv.sdotsp.sc.h rD, rs1, rs2
1 0101 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.sdotsp.sci.h rD, rs1, Imm6
1 0101 0 0 src2 src1 001 dest 111 1011 cv.sdotsp.b rD, rs1, rs2
1 0101 0 0 src2 src1 101 dest 111 1011 cv.sdotsp.sc.b rD, rs1, rs2
1 0101 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.sdotsp.sci.b rD, rs1, Imm6
1 1000 0 0 src2 src1 000 dest 111 1011 cv.shuffle.h rD, rs1, rs2
1 1000 0 Imm6[0|5:1] src1 110 dest 111 1011 cv.shuffle.sci.h rD, rs1, Imm6
1 1000 0 0 src2 src1 001 dest 111 1011 cv.shuffle.b rD, rs1, rs2
1 1000 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.shuffleI0.sci.b rD, rs1, Imm6
1 1001 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.shuffleI1.sci.b rD, rs1, Imm6
1 1010 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.shuffleI2.sci.b rD, rs1, Imm6
1 1011 0 Imm6[0|5:1] src1 111 dest 111 1011 cv.shuffleI3.sci.b rD, rs1, Imm6
1 1100 0 0 src2 src1 000 dest 111 1011 cv.shuffle2.h rD, rs1, rs2
1 1100 0 0 src2 src1 001 dest 111 1011 cv.shuffle2.b rD, rs1, rs2
1 1110 0 0 src2 src1 000 dest 111 1011 cv.pack rD, rs1, rs2

continues on next page

7.7. SIMD 47

CV32E40P User Manual

Table 7.35 – continued from previous page
31 : 27 26 25 24 :

20
19 :
15

14 :
12

11 : 7 6 : 0

funct5 F rs2 rs1 funct3 rD opcode
1 1110 0 1 src2 src1 000 dest 111 1011 cv.pack.h rD, rs1, rs2
1 1111 0 1 src2 src1 001 dest 111 1011 cv.packhi.b rD, rs1, rs2
1 1111 0 0 src2 src1 001 dest 111 1011 cv.packlo.b rD, rs1, rs2

7.7.2 SIMD Comparison operations

SIMD comparisons are done on individual bytes (.b) or half-words (.h), depending on the chosen mode. If the com-
parison result is true, all bits in the corresponding byte/half-word are set to 1. If the comparison result is false, all bits
are set to 0.

The default mode (no .sc, .sci) compares the lowest byte/half-word of the first operand with the lowest byte/half-word
of the second operand, and so on. If the mode is set to scalar replication (.sc), always the lowest byte/half-word of the
second operand is used for comparisons, thus instead of a vector comparison a scalar comparison is performed. In the
immediate scalar replication mode (.sci), the immediate given to the instruction is used for the comparison.

Table 7.36: SIMD Comparison operations
Mnemonic Description
cv.cmpeq[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] == op2 ? ‘1 : ‘0
cv.cmpne[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] != op2 ? ‘1 : ‘0
cv.cmpgt[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] > op2 ? ‘1 : ‘0
cv.cmpge[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] >=op2 ? ‘1 : ‘0
cv.cmplt[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] < op2 ? ‘1 : ‘0
cv.cmple[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] <= op2 ? ‘1 : ‘0
cv.cmpgtu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] > op2 ? ‘1 : ‘0

Note: Unsigned comparison.
cv.cmpgeu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] >= op2 ? ‘1 : ‘0

Note: Unsigned comparison.
cv.cmpltu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] < op2 ? ‘1 : ‘0

Note: Unsigned comparison.
cv.cmpleu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] rD[i] = rs1[i] <= op2 ? ‘1 : ‘0

Note: Unsigned comparison.

7.7.3 SIMD Comparison Encoding

Table 7.37: SIMD Comparison encoding
31 : 27 26 25 24 :

20
19 :
15

14 :
12

11 : 7 6 : 0

funct5 F rs2 rs1 funct3 rD opcode
0 0000 1 0 src2 src1 000 dest 111 1011 cv.cmpeq.h rD, rs1, rs2
0 0000 1 0 src2 src1 100 dest 111 1011 cv.cmpeq.sc.h rD, rs1, rs2
0 0000 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmpeq.sci.h rD, rs1, Imm6
0 0000 1 0 src2 src1 001 dest 111 1011 cv.cmpeq.b rD, rs1, rs2
0 0000 1 0 src2 src1 101 dest 111 1011 cv.cmpeq.sc.b rD, rs1, rs2
0 0000 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmpeq.sci.b rD, rs1, Imm6
0 0001 1 0 src2 src1 000 dest 111 1011 cv.cmpne.h rD, rs1, rs2

continues on next page

48 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

Table 7.37 – continued from previous page
31 : 27 26 25 24 :

20
19 :
15

14 :
12

11 : 7 6 : 0

funct5 F rs2 rs1 funct3 rD opcode
0 0001 1 0 src2 src1 100 dest 111 1011 cv.cmpne.sc.h rD, rs1, rs2
0 0001 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmpne.sci.h rD, rs1, Imm6
0 0001 1 0 src2 src1 001 dest 111 1011 cv.cmpne.b rD, rs1, rs2
0 0001 1 0 src2 src1 101 dest 111 1011 cv.cmpne.sc.b rD, rs1, rs2
0 0001 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmpne.sci.b rD, rs1, Imm6
0 0010 1 0 src2 src1 000 dest 111 1011 cv.cmpgt.h rD, rs1, rs2
0 0010 1 0 src2 src1 100 dest 111 1011 cv.cmpgt.sc.h rD, rs1, rs2
0 0010 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmpgt.sci.h rD, rs1, Imm6
0 0010 1 0 src2 src1 001 dest 111 1011 cv.cmpgt.b rD, rs1, rs2
0 0010 1 0 src2 src1 101 dest 111 1011 cv.cmpgt.sc.b rD, rs1, rs2
0 0010 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmpgt.sci.b rD, rs1, Imm6
0 0011 1 0 src2 src1 000 dest 111 1011 cv.cmpge.h rD, rs1, rs2
0 0011 1 0 src2 src1 100 dest 111 1011 cv.cmpge.sc.h rD, rs1, rs2
0 0011 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmpge.sci.h rD, rs1, Imm6
0 0011 1 0 src2 src1 001 dest 111 1011 cv.cmpge.b rD, rs1, rs2
0 0011 1 0 src2 src1 101 dest 111 1011 cv.cmpge.sc.b rD, rs1, rs2
0 0011 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmpge.sci.b rD, rs1, Imm6
0 0100 1 0 src2 src1 000 dest 111 1011 cv.cmplt.h rD, rs1, rs2
0 0100 1 0 src2 src1 100 dest 111 1011 cv.cmplt.sc.h rD, rs1, rs2
0 0100 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmplt.sci.h rD, rs1, Imm6
0 0100 1 0 src2 src1 001 dest 111 1011 cv.cmplt.b rD, rs1, rs2
0 0100 1 0 src2 src1 101 dest 111 1011 cv.cmplt.sc.b rD, rs1, rs2
0 0100 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmplt.sci.b rD, rs1, Imm6
0 0101 1 0 src2 src1 000 dest 111 1011 cv.cmple.h rD, rs1, rs2
0 0101 1 0 src2 src1 100 dest 111 1011 cv.cmple.sc.h rD, rs1, rs2
0 0101 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmple.sci.h rD, rs1, Imm6
0 0101 1 0 src2 src1 001 dest 111 1011 cv.cmple.b rD, rs1, rs2
0 0101 1 0 src2 src1 101 dest 111 1011 cv.cmple.sc.b rD, rs1, rs2
0 0101 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmple.sci.b rD, rs1, Imm6
0 0110 1 0 src2 src1 000 dest 111 1011 cv.cmpgtu.h rD, rs1, rs2
0 0110 1 0 src2 src1 100 dest 111 1011 cv.cmpgtu.sc.h rD, rs1, rs2
0 0110 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmpgtu.sci.h rD, rs1, Imm6
0 0110 1 0 src2 src1 001 dest 111 1011 cv.cmpgtu.b rD, rs1, rs2
0 0110 1 0 src2 src1 101 dest 111 1011 cv.cmpgtu.sc.b rD, rs1, rs2
0 0110 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmpgtu.sci.b rD, rs1, Imm6
0 0111 1 0 src2 src1 000 dest 111 1011 cv.cmpgeu.h rD, rs1, rs2
0 0111 1 0 src2 src1 100 dest 111 1011 cv.cmpgeu.sc.h rD, rs1, rs2
0 0111 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmpgeu.sci.h rD, rs1, Imm6
0 0111 1 0 src2 src1 001 dest 111 1011 cv.cmpgeu.b rD, rs1, rs2
0 0111 1 0 src2 src1 101 dest 111 1011 cv.cmpgeu.sc.b rD, rs1, rs2
0 0111 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmpgeu.sci.b rD, rs1, Imm6
0 1000 1 0 src2 src1 000 dest 111 1011 cv.cmpltu.h rD, rs1, rs2
0 1000 1 0 src2 src1 100 dest 111 1011 cv.cmpltu.sc.h rD, rs1, rs2
0 1000 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmpltu.sci.h rD, rs1, Imm6
0 1000 1 0 src2 src1 001 dest 111 1011 cv.cmpltu.b rD, rs1, rs2
0 1000 1 0 src2 src1 101 dest 111 1011 cv.cmpltu.sc.b rD, rs1, rs2
0 1000 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmpltu.sci.b rD, rs1, Imm6

continues on next page

7.7. SIMD 49

CV32E40P User Manual

Table 7.37 – continued from previous page
31 : 27 26 25 24 :

20
19 :
15

14 :
12

11 : 7 6 : 0

funct5 F rs2 rs1 funct3 rD opcode
0 1001 1 0 src2 src1 000 dest 111 1011 cv.cmpleu.h rD, rs1, rs2
0 1001 1 0 src2 src1 100 dest 111 1011 cv.cmpleu.sc.h rD, rs1, rs2
0 1001 1 Imm6[0|5:1] src1 110 dest 111 1011 cv.cmpleu.sci.h rD, rs1, Imm6
0 1001 1 0 src2 src1 001 dest 111 1011 cv.cmpleu.b rD, rs1, rs2
0 1001 1 0 src2 src1 101 dest 111 1011 cv.cmpleu.sc.b rD, rs1, rs2
0 1001 1 Imm6[0|5:1] src1 111 dest 111 1011 cv.cmpleu.sci.b rD, rs1, Imm6

7.7.4 SIMD Complex-number operations

SIMD Complex-number operations are extra instructions that uses the packed-SIMD extentions to represent Complex-
numbers. These extentions use only the half-words mode and only operand in registers. A number C = {Re, Im} is
represented as a vector of two 16-Bits signed numbers. C[0] is the real part [15:0], C[1] is the imaginary part [31:16].
Such operations are subtraction of 2 complexes with post rotation by -j, the complex and conjugate, complex multipli-
cations and complex additions/substractions. The complex multiplications are performed in two separate instructions,
one to compute the real part, and one to compute the imaginary part.

As for all the other SIMD instructions, no flags are raised and CSR register are unmodified. No carry, overflow is
generated. Instructions are rounded up as the mask & 0xFFFF explicits.

Table 7.38: SIMD Complex-number operations
Mnemonic Description
cv.cplxmul.r{/,.div2,.div4,.div8} rD[1] = rD[1]

rD[0] = (rs1[0]*rs2[0] - rs1[1]*rs2[1]) >> {15,16,17,18}
Note: Arithmetic shift right.

cv.cplxmul.i{/,.div2,.div4,.div8} rD[1] = (rs1[0]*rs2[1] + rs1[1]*rs2[0]) >> {15,16,17,18}
rD[0] = rD[0]
Note: Arithmetic shift right.

cv.cplxconj rD[1] = -rs1[1]
rD[0] = rs1[0]

cv.subrotmj{/,.div2,.div4,.div8} rD[1] = ((rs2[0] - rs1[0]) & 0xFFFF) >> {0,1,2,3}
rD[0] = ((rs1[1] - rs2[1]) & 0xFFFF) >> {0,1,2,3}
Note: Arithmetic shift right.

cv.add{.div2,.div4,.div8} rD[1] = ((rs1[1] + rs2[1]) & 0xFFFF) >> {1,2,3}
rD[0] = ((rs1[0] + rs2[0]) & 0xFFFF) >> {1,2,3}
Note: Arithmetic shift right.

cv.sub{.div2,.div4,.div8} rD[1] = ((rs1[1] - rs2[1]) & 0xFFFF) >> {1,2,3}
rD[0] = ((rs1[0] - rs2[0]) & 0xFFFF) >> {1,2,3}
Note: Arithmetic shift right.

50 Chapter 7. CORE-V Instruction Set Custom Extensions

CV32E40P User Manual

7.7.5 SIMD Complex-numbers Encoding

Table 7.39: SIMD ALU encoding
31 : 27 26 25 24 :

20
19 :
15

14 :
12

11 : 7 6 : 0

funct5 F rs2 rs1 funct3 rD opcode
0 1010 1 0 src2 src1 000 dest 111 1011 cv.cplxmul.r rD, rs1, rs2
0 1010 1 0 src2 src1 010 dest 111 1011 cv.cplxmul.r.div2 rD, rs1, rs2
0 1010 1 0 src2 src1 100 dest 111 1011 cv.cplxmul.r.div4 rD, rs1, rs2
0 1010 1 0 src2 src1 110 dest 111 1011 cv.cplxmul.r.div8 rD, rs1, rs2
0 1010 1 1 src2 src1 000 dest 111 1011 cv.cplxmul.i rD, rs1, rs2
0 1010 1 1 src2 src1 010 dest 111 1011 cv.cplxmul.i.div2 rD, rs1, rs2
0 1010 1 1 src2 src1 100 dest 111 1011 cv.cplxmul.i.div4 rD, rs1, rs2
0 1010 1 1 src2 src1 110 dest 111 1011 cv.cplxmul.i.div8 rD, rs1, rs2
0 1011 1 0 00000 src1 000 dest 111 1011 cv.cplxconj rD, rs1
0 1100 1 0 src2 src1 000 dest 111 1011 cv.subrotmj rD, rs1, rs2
0 1100 1 0 src2 src1 010 dest 111 1011 cv.subrotmj.div2 rD, rs1, rs2
0 1100 1 0 src2 src1 100 dest 111 1011 cv.subrotmj.div4 rD, rs1, rs2
0 1100 1 0 src2 src1 110 dest 111 1011 cv.subrotmj.div8 rD, rs1, rs2
0 1101 1 0 src2 src1 010 dest 111 1011 cv.add.div2 rD, rs1, rs2
0 1101 1 0 src2 src1 100 dest 111 1011 cv.add.div4 rD, rs1, rs2
0 1101 1 0 src2 src1 110 dest 111 1011 cv.add.div8 rD, rs1, rs2
0 1110 1 0 src2 src1 010 dest 111 1011 cv.sub.div2 rD, rs1, rs2
0 1110 1 0 src2 src1 100 dest 111 1011 cv.sub.div4 rD, rs1, rs2
0 1110 1 0 src2 src1 110 dest 111 1011 cv.sub.div8 rD, rs1, rs2

7.7. SIMD 51

CV32E40P User Manual

52 Chapter 7. CORE-V Instruction Set Custom Extensions

CHAPTER

EIGHT

PERFORMANCE COUNTERS

CV32E40P implements performance counters according to the RISC-V Privileged Specification, version 1.11 (see
Hardware Performance Monitor, Section 3.1.11). The performance counters are placed inside the Control and Status
Registers (CSRs) and can be accessed with the CSRRW(I) and CSRRS/C(I) instructions.

CV32E40P implements the clock cycle counter mcycle(h), the retired instruction counter minstret(h), as well as
the parameterizable number of event counters mhpmcounter3(h) - mhpmcounter31(h) and the corresponding event
selector CSRs mhpmevent3 - mhpmevent31, and the mcountinhibitCSR to individually enable/disable the counters.
mcycle(h) and minstret(h) are always available.

All counters are 64 bit wide.

The number of event counters is determined by the parameter NUM_MHPMCOUNTERS with a range from 0 to 29 (default
value of 1).

Unimplemented counters always read 0.

Note: All performance counters are using the gated version of clk_i. The wfi instruction, the cv.elw instruction, and
pulp_clock_en_i impact the gating of clk_i as explained in Sleep Unit and can therefore affect the counters.

8.1 Event Selector

The following events can be monitored using the performance counters of CV32E40P.

53

CV32E40P User Manual

Table 8.1: Event Selector
Bit # Event Name Description
0 CYCLES Number of cycles
1 INSTR Number of instructions retired
2 LD_STALL Number of load use hazards
3 JMP_STALL Number of jump register hazards
4 IMISS Cycles waiting for instruction fethces, excluding jumps and branches
5 LD Number of load instructions
6 ST Number of store instructions
7 JUMP Number of jumps (unconditional)
8 BRANCH Number of branches (conditional)
9 BRANCH_TAKEN Number of branches taken (conditional)
10 COMP_INSTR Number of compressed instructions retired
11 PIPE_STALL Cycles from stalled pipeline
12 APU_TYPE Numbe of type conflicts on APU/FP
13 APU_CONT Number of contentions on APU/FP
14 APU_DEP Number of dependency stall on APU/FP
15 APU_WB Number of write backs on APUB/FP

The event selector CSRs mhpmevent3 - mhpmevent31 define which of these events are counted by the event counters
mhpmcounter3(h) - mhpmcounter31(h). If a specific bit in an event selector CSR is set to 1, this means that events
with this ID are being counted by the counter associated with that selector CSR. If an event selector CSR is 0, this
means that the corresponding counter is not counting any event.

Note: At most 1 bit should be set in an event selector. If multiple bits are set in an event selector, then the operation
of the associated counter is undefined.

8.2 Controlling the counters from software

By default, all available counters are disabled after reset in order to provide the lowest power consumption.

They can be individually enabled/disabled by overwriting the corresponding bit in the mcountinhibit CSR at address
0x320 as described in the RISC-V Privileged Specification, version 1.11 (see Machine Counter-Inhibit CSR, Section
3.1.13). In particular, to enable/disable mcycle(h), bit 0 must be written. For minstret(h), it is bit 2. For event
counter mhpmcounterX(h), it is bit X.

The lower 32 bits of all counters can be accessed through the base register, whereas the upper 32 bits are accessed
through the h-register. Reads of all these registers are non-destructive.

8.3 Parametrization at synthesis time

The mcycle(h) and minstret(h) counters are always available and 64 bit wide.

The number of available event counters mhpmcounterX(h) can be controlled via the NUM_MHPMCOUNTERS parameter.
By default NUM_MHPCOUNTERS set to 1.

An increment of 1 to the NUM_MHPCOUNTERS results in the addition of the following:

• 64 flops for mhpmcounterX

54 Chapter 8. Performance Counters

CV32E40P User Manual

• 15 flops for mhpmeventX

• 1 flop for mcountinhibit[X]

• Adder and event enablement logic

8.4 Time Registers (time(h))

The user mode time(h) registers are not implemented. Any access to these registers will cause an illegal instruction
trap. It is recommended that a software trap handler is implemented to detect access of these CSRs and convert that
into access of the platform-defined mtime register (if implemented in the platform).

8.4. Time Registers (time(h)) 55

CV32E40P User Manual

56 Chapter 8. Performance Counters

CHAPTER

NINE

CONTROL AND STATUS REGISTERS

CV32E40P does not implement all control and status registers specified in the RISC-V privileged specifications, but
is limited to the registers that were needed for the PULP system. The reason for this is that we wanted to keep the
footprint of the core as low as possible and avoid any overhead that we do not explicitly need.

9.1 CSR Map

Table 9.1 lists all implemented CSRs. Two columns in Table 9.1 may require additional explanation:

The Privilege column indicates the access mode of a CSR. The first letter indicates the lowest privilege level required
to access the CSR. Attempts to access a CSR with a higher privilege level than the core is currently running in will
throw an illegal instruction exception. This is largely a moot point for the CV32E40P as it only supports machine and
debug modes. The remaining letters indicate the read and/or write behavior of the CSR when accessed by the indicated
or higher privilge level:

• RW: CSR is read-write. That is, CSR instructions (e.g. csrrw) may write any value and that value will be
returned on a subsequent read (unless a side-effect causes the core to change the CSR value).

• RO: CSR is read-only. Writes by CSR instructions raise an illegal instruction exception.

Writes of a non-supported value to WLRL bitfields of a RW CSR do not result in an illegal instruction exception. The
exact bitfield access types, e.g. WLRL or WARL, can be found in the RISC-V privileged specification.

In the Description column there is a specific comment which identifies those CSRs that are dependent on the value of
specific parameters. If these parameters are not set as indicated in Table 9.1 then the associated CSR is not implemented.
If the column does not mention any parameter then the associated CSR is always implemented.

Reads or writes to a CSR that is not implemented will result in an illegal instruction exception.

Table 9.1: Control and Status Register Map
CSR
Address

Name Privilege Description

User CSRs
0x001 fflags URW Floating-point accrued exceptions.

Only present if FPU = 1
0x002 frm URW Floating-point dynamic rounding mode.

Only present if FPU = 1
0x003 fcsr URW Floating-point control and status register.

Only present if FPU = 1
0xC00 cycle URO (HPM) Cycle Counter
0xC02 instret URO (HPM) Instructions-Retired Counter
0xC03 hpmcounter3 URO (HPM) Performance-Monitoring Counter 3

continues on next page

57

CV32E40P User Manual

Table 9.1 – continued from previous page
CSR
Address

Name Privilege Description

. . . .
0xC1F hpmcounter31 URO (HPM) Performance-Monitoring Counter 31
0xC80 cycleh URO (HPM) Upper 32 bits Cycle Counter
0xC82 instreth URO (HPM) Upper 32 bits Instructions-Retired Counter
0xC83 hpmcounterh3 URO (HPM) Upper 32 bits Performance-Monitoring Counter 3
. . . .
0xC9F hpmcounterh31 URO (HPM) Upper 32 bits Performance-Monitoring Counter 31
User Custom CSRs
0xCC0 lpstart0 URO Hardware Loop 0 Start.

Only present if COREV_PULP = 1
0xCC1 lpend0 URO Hardware Loop 0 End.

Only present if COREV_PULP = 1
0xCC2 lpcount0 URO Hardware Loop 0 Counter.

Only present if COREV_PULP = 1
0xCC4 lpstart1 URO Hardware Loop 1 Start.

Only present if COREV_PULP = 1
0xCC5 lpend1 URO Hardware Loop 1 End.

Only present if COREV_PULP = 1
0xCC6 lpcount1 URO Hardware Loop 1 Counter.

Only present if COREV_PULP = 1
0xCD0 uhartid URO Hardware Thread ID

Only present if COREV_PULP = 1
0xCD1 privlv URO Privilege Level

Only present if COREV_PULP = 1
0xCD2 zfinx URO ZFINX ISA

Only present if COREV_PULP = 1 & (FPU = 0 | (FPU = 1 &
ZFINX = 1))

Machine CSRs
0x300 mstatus MRW Machine Status
0x301 misa MRW Machine ISA
0x304 mie MRW Machine Interrupt Enable register
0x305 mtvec MRW Machine Trap-Handler Base Address
0x320 mcountinhibit MRW (HPM) Machine Counter-Inhibit register
0x323 mhpmevent3 MRW (HPM) Machine Performance-Monitoring Event Selector 3
. . . .
0x33F mhpmevent31 MRW (HPM) Machine Performance-Monitoring Event Selector 31
0x340 mscratch MRW Machine Scratch
0x341 mepc MRW Machine Exception Program Counter
0x342 mcause MRW Machine Trap Cause
0x343 mtval MRW Machine Trap Value
0x344 mip MRW Machine Interrupt Pending register
0x7A0 tselect MRW Trigger Select register
0x7A1 tdata1 MRW Trigger Data register 1
0x7A2 tdata2 MRW Trigger Data register 2
0x7A3 tdata3 MRW Trigger Data register 3
0x7A4 tinfo MRO Trigger Info
0x7A8 mcontext MRW Machine Context register
0x7AA scontext MRW Machine Context register
0x7B0 dcsr DRW Debug Control and Status

continues on next page

58 Chapter 9. Control and Status Registers

CV32E40P User Manual

Table 9.1 – continued from previous page
CSR
Address

Name Privilege Description

0x7B1 dpc DRW Debug PC
0x7B2 dscratch0 DRW Debug Scratch register 0
0x7B3 dscratch1 DRW Debug Scratch register 1
0xB00 mcycle MRW (HPM) Machine Cycle Counter
0xB02 minstret MRW (HPM) Machine Instructions-Retired Counter
0xB03 mhpmcounter3 MRW (HPM) Machine Performance-Monitoring Counter 3
. . . .
0xB1F mhpmcounter31 MRW (HPM) Machine Performance-Monitoring Counter 31
0xB80 mcycleh MRW (HPM) Upper 32 bits Machine Cycle Counter
0xB82 minstreth MRW (HPM) Upper 32 bits Machine Instructions-Retired Counter
0xB83 mhpmcounterh3 MRW (HPM) Upper 32 bits Machine Performance-Monitoring

Counter 3
. . . .
0xB9F mhpmcounterh31 MRW (HPM) Upper 32 bits Machine Performance-Monitoring

Counter 31
0xF11 mvendorid MRO Machine Vendor ID
0xF12 marchid MRO Machine Architecture ID
0xF13 mimpid MRO Machine Implementation ID
0xF14 mhartid MRO Hardware Thread ID

9.2 CSR Descriptions

What follows is a detailed definition of each of the CSRs listed above. The Mode column defines the access mode
behavior of each bit field when accessed by the privilege level specified in Table 9.1 (or a higher privilege level):

• RO: read-only fields are not affect by CSR write instructions. Such fields either return a fixed value, or a value
determined by the operation of the core.

• RW: read/write fields store the value written by CSR writes. Subsequent reads return either the previously
written value or a value determined by the operation of the core.

9.2.1 Floating-point CSRs

Floating-point accrued exceptions (fflags)

CSR Address: 0x001 (only present if FPU = 1)

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:5 RO Writes are ignored; reads return 0.
4 RW NV - Invalid Operation
3 RW DZ - Divide by Zero
2 RW OF - Overflow
1 RW UF - Underflow
0 RW NX - Inexact

9.2. CSR Descriptions 59

CV32E40P User Manual

Floating-point dynamic rounding mode (frm)

CSR Address: 0x002 (only present if FPU = 1)

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:3 RO Writes are ignored; reads return 0.
2:0 RW Rounding mode:

000 = RNE
001 = RTZ
010 = RDN
011 = RUP
100 = RMM
101 = Invalid
110 = Invalid
111 = DYN

Floating-point control and status register (fcsr)

CSR Address: 0x003 (only present if FPU = 1)

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:8 RO Reserved. Writes are ignored; reads return 0.
7:5 RW Rounding Mode (frm)
4:0 RW Accrued Exceptions (fflags)

9.2.2 Hardware Loops CSRs

HWLoop Start Address 0/1 (lpstart0/1)

CSR Address: 0xCC0/0xCC4 (only present if COREV_PULP = 1)

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:2 URO Start Address of the HWLoop 0/1.
1:0 URO 0

60 Chapter 9. Control and Status Registers

CV32E40P User Manual

HWLoop End Address 0/1 (lpend0/1)

CSR Address: 0xCC1/0xCC5 (only present if COREV_PULP = 1)

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:2 URO End Address of the HWLoop 0/1.
1:0 URO 0

HWLoop Count Address 0/1 (lpcount0/1)

CSR Address: 0xCC2/0xCC6 (only present if COREV_PULP = 1)

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 URO Number of iteration of HWLoop 0/1.

9.2.3 Other CSRs

Machine Status (mstatus)

CSR Address: 0x300

Reset Value: 0x0000_1800

Detailed:

9.2. CSR Descriptions 61

CV32E40P User Manual

Bit # Mode Description
31 RO SD: State Dirty

SD set to 1 if FS = 11 meaning Floating point State is dirty so save/restore is
needed in case of context switch.
0 if FPU = 0 or (FPU = 1 and ZFINX = 1).

30:15 RO 0, Unimplemented.
14:13 RW FS: Floating point State

00 = Off
01 = Initial
10 = Clean
11 = Dirty
0 if FPU = 0 or (FPU = 1 and ZFINX = 1).

12:11 RO MPP: Machine Previous Priviledge mode
11 when the user mode is not enabled.

10:8 RO 0, Unimplemented.
7 RO MPIE: Machine Previous Interrupt Enable

When an exception is encountered, MPIE will be set to MIE. When the mret
instruction is executed, the value of MPIE will be stored to MIE.

6:4 RO 0, Unimplemented.
3 RW MIE: Machine Interrupt Enable

If you want to enable interrupt handling in your exception handler, set the Inter-
rupt Enable MIE to 1 inside your handler code.

2:0 RO 0, Unimplemented.

Machine Interrupt Enable register (mie)

CSR Address: 0x304

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:16 RW Machine Fast Interrupt Enables

Set bit x to enable interrupt irq_i[x] (x between 16 and 31).
15:12 RO 0
11 RW MEIE: Machine External Interrupt Enable

If set, irq_i[11] is enabled.
10:8 RO 0
7 RW MTIE: Machine Timer Interrupt Enable

If set, irq_i[7] is enabled.
6:4 RO 0
3 RW MSIE: Machine Software Interrupt Enable

If set, irq_i[3] is enabled.
2:0 RO 0

62 Chapter 9. Control and Status Registers

CV32E40P User Manual

Machine Trap-Vector Base Address (mtvec)

CSR Address: 0x305

Reset Value: Defined

Detailed:

Bit # Mode Description
31 : 8 RW BASE[31:8]

The trap-handler base address, always aligned to 256 bytes.
7 : 2 RO BASE[7:2]

The trap-handler base address, always aligned to 256 bytes, i.e., mtvec[7:2] is
always set to 0.

1 RO MODE[1]
0

0 RW MODE[0]
0 = Direct mode
1 = Vectored mode.

The initial value of mtvec is equal to {mtvec_addr_i[31:8], 6’b0, 2’b01}.

When an exception or an interrupt is encountered, the core jumps to the corresponding handler using the content of the
MTVEC[31:8] as base address. Only 8-byte aligned addresses are allowed. Both direct mode and vectored mode are
supported.

Machine Scratch (mscratch)

CSR Address: 0x340

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW Scratch value

Machine Exception PC (mepc)

CSR Address: 0x341

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:1 RW MEPC: Machine Exception Program Counter
0 R0 0

When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception
address. When a mret instruction is executed, the value from MEPC replaces the current program counter.

9.2. CSR Descriptions 63

CV32E40P User Manual

Machine Cause (mcause)

CSR Address: 0x342

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31 RW Interrupt: This bit is set when the exception was triggered by an interrupt.
30:5 RO (0) 0
4:0 RW Exception Code (See note below)

NOTE: software accesses to mcause[4:0] must be sensitive to the WLRL field specification of this CSR. For example,
when mcause[31] is set, writing 0x1 to mcause[1] (Supervisor software interrupt) will result in UNDEFINED behavior.

Machine Trap Value (mtval)

CSR Address: 0x343

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO Writes are ignored; reads return 0.

Machine Interrupt Pending register (mip)

CSR Address: 0x344

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:16 RO Machine Fast Interrupts Pending

If bit x is set, interrupt irq_i[x] is pending (x between 16 and 31).
15:12 RO 0
11 RO MEIP: Machine External Interrupt Pending

If set, irq_i[11] is pending.
10:8 RO 0
7 RO MTIP: Machine Timer Interrupt Pending

If set, irq_i[7] is pending.
6:4 RO 0
3 RO MSIP: Machine Software Interrupt Pending

If set, irq_i[3] is pending.
2:0 RO 0

64 Chapter 9. Control and Status Registers

CV32E40P User Manual

9.2.4 Trigger CSRs

Trigger Select register (tselect)

CSR Address: 0x7A0

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO CV32E40P implements a single trigger, therefore this register will always read

as zero.

Accessible in Debug Mode or M-Mode.

Trigger Data register 1 (tdata1)

CSR Address: 0x7A1

Reset Value: 0x2800_1040

Detailed:

Accessible in Debug Mode or M-Mode. Since native triggers are not supported, writes to this register from M-Mode
will be ignored.

Note: CV32E40P only implements one type of trigger, Match Control. Most fields of this register will read as a
fixed value to reflect the single mode that is supported, in particular, instruction address match as described in the
Debug Specification 0.13.2 section 5.2.2 & 5.2.9. The type, dmode, hit, select, timing, sizelo, action, chain, match,
m, s, u, store and load bitfields of this CSR, which are marked as R/W in Debug Specification 0.13.2, are therefore
implemented as WARL bitfields (corresponding to how these bitfields will be specified in the forthcoming Debug
Specification 0.14.0).

Bit # Mode Description
31:28 RO (0x2) type: 2 = Address/Data match trigger type.
27 RO (0x1) dmode: 1 = Only debug mode can write tdata registers
26:21 RO (0x0) maskmax: 0 = Only exact matching supported.
20 RO (0x0) hit: 0 = Hit indication not supported.
19 RO (0x0) select: 0 = Only address matching is supported.
18 RO (0x0) timing: 0 = Break before the instruction at the specified address.
17:16 RO (0x0) sizelo: 0 = Match accesses of any size.
15:12 RO (0x1) action: 1 = Enter debug mode on match.
11 RO (0x0) chain: 0 = Chaining not supported.
10:7 RO (0x0) match: 0 = Match the whole address.
6 RO (0x1) m: 1 = Match in M-Mode.
5 RO (0x0) zero.
4 RO (0x0) s: 0 = S-Mode not supported.
3 RO (0x0) u: 0 = U-Mode not supported.
2 RW execute: Enable matching on instruction address.
1 RO (0x0) store: 0 = Store address / data matching not supported.
0 RO (0x0) load: 0 = Load address / data matching not supported.

9.2. CSR Descriptions 65

CV32E40P User Manual

Trigger Data register 2 (tdata2)

CSR Address: 0x7A2

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW data

Accessible in Debug Mode or M-Mode. Since native triggers are not supported, writes to this register from M-Mode
will be ignored. This register stores the instruction address to match against for a breakpoint trigger.

Trigger Data register 3 (tdata3)

CSR Address: 0x7A3

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO 0

Accessible in Debug Mode or M-Mode. CV32E40P does not support the features requiring this register. Writes are
ignored and reads will always return zero.

Trigger Info (tinfo)

CSR Address: 0x7A4

Reset Value: 0x0000_0004

Detailed:

Bit # Mode Description
31:16 RO 0
15:0 RO (0x4) info. Only type 2 is supported.

The info field contains one bit for each possible type enumerated in tdata1. Bit N corresponds to type N. If the bit is
set, then that type is supported by the currently selected trigger. If the currently selected trigger does not exist, this field
contains 1.

Accessible in Debug Mode or M-Mode.

66 Chapter 9. Control and Status Registers

CV32E40P User Manual

Machine Context register (mcontext)

CSR Address: 0x7A8

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO 0

Accessible in Debug Mode or M-Mode. CV32E40P does not support the features requiring this register. Writes are
ignored and reads will always return zero.

9.2.5 Debug CSRs

Debug Control and Status (dcsr)

CSR Address: 0x7B0

Reset Value: 0x4000_0003

Note: The ebreaks, ebreaku and prv bitfields of this CSR are marked as R/W in Debug Specification 0.13.2. However,
as CV32E40P only supports machine mode, these bitfields are implemented as WARL bitfields (corresponding to how
these bitfields will be specified in the forthcoming Debug Specification 0.14.0).

Detailed:

Bit # Mode Description
31:28 RO (0x4) xdebugver: returns 4 - External debug support exists as it is described in this

document.
27:16 RO (0x0) Reserved
15 RW ebreakm
14 RO (0x0) Reserved
13 RO (0x0) ebreaks. Always 0.
12 RO (0x0) ebreaku. Always 0.
11 RW stepie
10 RO (0x0) stopcount. Always 0.
9 RO (0x0) stoptime. Always 0.
8:6 RO cause
5 RO (0x0) Reserved
4 RO (0x0) mprven. Always 0.
3 RO (0x0) nmip. Always 0.
2 RW step
1:0 RO (0x3) prv: returns the current priviledge mode

9.2. CSR Descriptions 67

CV32E40P User Manual

Debug PC (dpc)

CSR Address: 0x7B1

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:1 RO zero
0 RO DPC

When the core enters in Debug Mode, DPC contains the virtual address of the next instruction to be executed.

Debug Scratch register 0/1 (dscratch0/1)

CSR Address: 0x7B2/0x7B3

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW DSCRATCH0/1

9.2.6 Performances counters

Machine Counter-Inhibit register (mcountinhibit)

CSR Address: 0x320

Reset Value: 0x0000_000D

Detailed:

Bit # Mode Description
31:4 RW Dependent on number of counters implemented in design parameter
3 RW selectors: mhpmcounter3 inhibit
2 RW minstret inhibit
1 RO 0
0 RW mcycle inhibit

The performance counter inhibit control register. The default value is to inihibit counters out of reset. The bit returns a
read value of 0 for non implemented counters. This reset value shows the result using the default number of performance
counters to be 1.

68 Chapter 9. Control and Status Registers

CV32E40P User Manual

Machine Performance Monitoring Event Selector (mhpmevent3 .. mhpmevent31)

CSR Address: 0x323 - 0x33F

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:16 RO 0
15:0 RW selectors: Each bit represent a unique event to count

The event selector fields are further described in Performance Counters section. Non implemented counters always
return a read value of 0.

Machine Cycle Counter (mcycle)

CSR Address: 0xB00

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW The lower 32 bits of the 64 bit machine mode cycle counter.

Machine Instructions-Retired Counter (minstret)

CSR Address: 0xB02

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW The lower 32 bits of the 64 bit machine mode instruction retired counter.

Machine Performance Monitoring Counter (mhpmcounter3 .. mhpmcounter31)

CSR Address: 0xB03 - 0xB1F

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW Machine performance-monitoring counter

The lower 32 bits of the 64 bit machine performance-monitoring counter(s). The number of machine performance-
monitoring counters is determined by the parameter NUM_MHPMCOUNTERS with a range from 0 to 29 (default value of
1). Non implemented counters always return a read value of 0.

9.2. CSR Descriptions 69

CV32E40P User Manual

Upper 32 bits Machine Cycle Counter (mcycleh)

CSR Address: 0xB80

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW The upper 32 bits of the 64 bit machine mode cycle counter.

Upper 32 bits Machine Instructions-Retired Counter (minstreth)

CSR Address: 0xB82

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW The upper 32 bits of the 64 bit machine mode instruction retired counter.

Upper 32 bits Machine Performance Monitoring Counter (mhpmcounter3h .. mhpmcounter31h)

CSR Address: 0xB83 - 0xB9F

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RW Machine performance-monitoring counter

The upper 32 bits of the 64 bit machine performance-monitoring counter(s). The number of machine performance-
monitoring counters is determined by the parameter NUM_MHPMCOUNTERS with a range from 0 to 29 (default value of
1). Non implemented counters always return a read value of 0.

Cycle Counter (cycle)

CSR Address: 0xC00

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO 0

Read-only unprivileged shadow of the lower 32 bits of the 64 bit machine mode cycle counter.

70 Chapter 9. Control and Status Registers

CV32E40P User Manual

Instructions-Retired Counter (instret)

CSR Address: 0xC02

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO 0

Read-only unprivileged shadow of the lower 32 bits of the 64 bit machine mode instruction retired counter.

Performance Monitoring Counter (hpmcounter3 .. hpmcounter31)

CSR Address: 0xC03 - 0xC1F

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO 0

Read-only unprivileged shadow of the lower 32 bits of the 64 bit machine mode performance counter. Non implemented
counters always return a read value of 0.

Upper 32 bits Cycle Counter (cycleh)

CSR Address: 0xC80

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO 0

Read-only unprivileged shadow of the upper 32 bits of the 64 bit machine mode cycle counter.

Upper 32 bits Instructions-Retired Counter (instreth)

CSR Address: 0xC82

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO 0

Read-only unprivileged shadow of the upper 32 bits of the 64 bit machine mode instruction retired counter.

9.2. CSR Descriptions 71

CV32E40P User Manual

Upper 32 bits Performance Monitoring Counter (hpmcounter3h .. hpmcounter31h)

CSR Address: 0xC83 - 0xC9F

Reset Value: 0x0000_0000

Detailed:

Bit # Mode Description
31:0 RO 0

Read-only unprivileged shadow of the upper 32 bits of the 64 bit machine mode performance counter. Non implemented
counters always return a read value of 0.

9.2.7 ID CSRs

Machine ISA (misa)

CSR Address: 0x301

Reset Value: defined

Detailed:

Bit # Mode Description
31:30 RO (0x1) MXL (Machine XLEN)
29:26 RO (0x0) (Reserved)
25 RO (0x0) Z (Reserved)
24 RO (0x0) Y (Reserved)
23 RO X (Non-standard extensions present)
22 RO (0x0) W (Reserved)
21 RO (0x0) V (Tentatively reserved for Vector extension)
20 RO (0x0) U (User mode implemented)
19 RO (0x0) T (Tentatively reserved for Transactional Memory extension)
18 RO (0x0) S (Supervisor mode implemented)
17 RO (0x0) R (Reserved)
16 RO (0x0) Q (Quad-precision floating-point extension)
15 RO (0x0) P (Tentatively reserved for Packed-SIMD extension)
14 RO (0x0) O (Reserved)
13 RO (0x0) N (User-level interrupts supported)
12 RO (0x1) M (Integer Multiply/Divide extension)
11 RO (0x0) L (Tentatively reserved for Decimal Floating-Point extension)
10 RO (0x0) K (Reserved)
9 RO (0x0) J (Tentatively reserved for Dynamically Translated Languages extension)
8 RO (0x1) I (RV32I/64I/128I base ISA)
7 RO (0x0) H (Hypervisor extension)
6 RO (0x0) G (Additional standard extensions present)
5 RO F (Single-precision floating-point extension)
4 RO (0x0) E (RV32E base ISA)
3 RO (0x0) D (Double-precision floating-point extension)
2 RO (0x1) C (Compressed extension)
1 RO (0x0) B (Tentatively reserved for Bit-Manipulation extension)
0 RO (0x0) A (Atomic extension)

72 Chapter 9. Control and Status Registers

CV32E40P User Manual

Writes are ignored and all bitfields in the misa CSR area read as 0 except for the following:

• C = 1

• F = 1 if FPU = 1 and ZFINX = 0

• I = 1

• M = 1

• X = 1 if COREV_PULP = 1 or COREV_CLUSTER = 1

• MXL = 1 (i.e. XLEN = 32)

Machine Vendor ID (mvendorid)

CSR Address: 0xF11

Reset Value: 0x0000_0602

Detailed:

Bit # Mode Description
31:7 RO 0xC. Number of continuation codes in JEDEC manufacturer ID.
6:0 RO 0x2. Final byte of JEDEC manufacturer ID, discarding the parity bit.

The mvendorid encodes the OpenHW JEDEC Manufacturer ID, which is 2 decimal (bank 13).

Machine Architecture ID (marchid)

CSR Address: 0xF12

Reset Value: 0x0000_0004

Detailed:

Bit # Mode Description
31:0 RO Machine Architecture ID of CV32E40P is 4

Machine Implementation ID (mimpid)

CSR Address: 0xF13

Reset Value: Defined

Detailed:

Bit # Mode Description
31 : 1 RO 0
0 RO 1 if FPU = 1 or COREV_PULP = 1 or COREV_CLUSTER = 1 else 0.

9.2. CSR Descriptions 73

CV32E40P User Manual

Hardware Thread ID (mhartid)

CSR Address: 0xF14

Reset Value: Defined

Detailed:

Bit # Mode Description
31:0 RO Hardware Thread ID hart_id_i, see Core Integration

9.2.8 Non-RISC-V CSRs

User Hardware Thread ID (uhartid)

CSR Address: 0xCD0 (only present if COREV_PULP = 1)

Reset Value: Defined

Detailed:

Bit # Mode Description
31:0 RO Hardware Thread ID hart_id_i, see Core Integration

Similar to mhartid the uhartid provides the Hardware Thread ID. It differs from mhartid only in the required
privilege level. On CV32E40P, as it is a machine mode only implementation, this difference is not noticeable.

Privilege Level (privlv)

CSR Address: 0xCD1 (only present if COREV_PULP = 1)

Reset Value: 0x0000_0003

Detailed:

Bit # Mode Description
31:2 RO Reads as 0.
1:0 RO Current Privilege Level

00 = User
01 = Supervisor
10 = Hypervisor
11 = Machine
CV32E40P only supports Machine mode.

74 Chapter 9. Control and Status Registers

CV32E40P User Manual

ZFINX ISA (zfinx)

CSR Address: 0xCD2 (only present if COREV_PULP = 1 & (FPU = 0 | (FPU = 1 & ZFINX = 1)))

Reset Value: Defined

Bit # Mode Description
31:1 RO 0
0 RO 1 if FPU = 1 and ZFINX = 1 else 0.

9.2. CSR Descriptions 75

CV32E40P User Manual

76 Chapter 9. Control and Status Registers

CHAPTER

TEN

EXCEPTIONS AND INTERRUPTS

CV32E40P implements trap handling for interrupts and exceptions according to the RISC-V Privileged Specification,
version 1.11. The irq_i[31:16] interrupts are a custom extension.

When entering an interrupt/exception handler, the core sets the mepc CSR to the current program counter and saves
mstatus.MIE to mstatus.MPIE. All exceptions cause the core to jump to the base address of the vector table in the
mtvec CSR. Interrupts are handled in either direct mode or vectored mode depending on the value of mtvec.MODE.
In direct mode the core jumps to the base address of the vector table in the mtvec CSR. In vectored mode the core
jumps to the base address plus four times the interrupt ID. Upon executing an MRET instruction, the core jumps to the
program counter previously saved in the mepc CSR and restores mstatus.MPIE to mstatus.MIE.

The base address of the vector table must be aligned to 256 bytes (i.e., its least significant byte must be 0x00) and can be
programmed by writing to the mtvec CSR. For more information, see the Control and Status Registers documentation.

The core starts fetching at the address defined by boot_addr_i. It is assumed that the boot address is supplied via a
register to avoid long paths to the instruction fetch unit.

10.1 Interrupt Interface

Table 10.1 describes the interrupt interface.

Table 10.1: Interrupt interface signals
Signal Direction Description
irq_i[31:0] input Level sensistive active high interrupt inputs. Not all interrupt inputs can

be used on CV32E40P. Specifically irq_i[15:12], irq_i[10:8], irq_i[6:4]
and irq_i[2:0] shall be tied to 0 externally as they are reserved for future
standard use (or for cores which are not Machine mode only) in the RISC-
V Privileged specification.
irq_i[11], irq_i[7], and irq_i[3] correspond to the Machine External Inter-
rupt (MEI), Machine Timer Interrupt (MTI), and Machine Software Inter-
rupt (MSI) respectively.
The irq_i[31:16] interrupts are a CV32E40P specific extension to the
RISC-V Basic (a.k.a. CLINT) interrupt scheme.

irq_ack_o output Interrupt acknowledge
Set to 1 for one cycle when the interrupt with ID irq_id_o[4:0] is taken.

irq_id_o[4:0] output Interrupt index for taken interrupt
Only valid when irq_ack_o = 1.

77

CV32E40P User Manual

10.2 Interrupts

The irq_i[31:0] interrupts are controlled via the mstatus, mie and mip CSRs. CV32E40P uses the upper 16 bits of
mie and mip for custom interrupts (irq_i[31:16]), which reflects an intended custom extension in the RISC-V Basic
(a.k.a. CLINT) interrupt architecture. After reset, all interrupts are disabled. To enable interrupts, both the global
interrupt enable (MIE) bit in the mstatus CSR and the corresponding individual interrupt enable bit in the mie CSR
need to be set. For more information, see the Control and Status Registers documentation.

If multiple interrupts are pending, they are handled in the fixed priority order defined by the RISC-V Privileged Spec-
ification, version 1.11 (see Machine Interrupt Registers, Section 3.1.9). The highest priority is given to the interrupt
with the highest ID, except for the Machine Timer Interrupt, which has the lowest priority. So from high to low priority
the interrupts are ordered as follows: irq_i[31], irq_i[30], . . . , irq_i[16], irq_i[11], irq_i[3], irq_i[7].

All interrupt lines are level-sensitive. There are two supported mechanisms by which interrupts can be cleared at the
external source.

• A software-based mechanism in which the interrupt handler signals completion of the handling routine to the
interrupt source, e.g., through a memory-mapped register, which then deasserts the corresponding interrupt line.

• A hardware-based mechanism in which the irq_ack_o and irq_id_o[4:0] signals are used to clear the in-
terrupt sourcee, e.g. by an external interrupt controller. irq_ack_o is a 1 clk_i cycle pulse during which
irq_id_o[4:0] reflects the index in irq_id[*] of the taken interrupt.

In Debug Mode, all interrupts are ignored independent of mstatus.MIE and the content of the mie CSR.

10.3 Exceptions

CV32E40P can trigger an exception due to the following exception causes:

Table 10.2: Exceptions
Exception Code Description
2 Illegal instruction
3 Breakpoint
11 Environment call from M-Mode (ECALL)

The illegal instruction exception and M-Mode ECALL instruction exceptions cannot be disabled and are always ac-
tive. The core raises an illegal instruction exception for any instruction in the RISC-V privileged and unprivileged
specifications that is explicitly defined as being illegal according to the ISA implemented by the core, as well as for
any instruction that is left undefined in these specifications unless the instruction encoding is configured as a custom
CV32E40P instruction for specific parameter settings as defined in (see CORE-V Instruction Set Custom Extensions).
For example, in case the parameter FPU is set to 0, the CV32E40P raises an illegal instruction exception for any RVF in-
struction or CSR instruction trying to access F CSRs. The same concerns PULP extensions everytime both parameters
COREV_PULP and CORE_CLUSTER are set to 0 (see Core Integration).

78 Chapter 10. Exceptions and Interrupts

CV32E40P User Manual

10.4 Nested Interrupt/Exception Handling

CV32E40P does support nested interrupt/exception handling in software. The hardware automatically disables in-
terrupts upon entering an interrupt/exception handler. Otherwise, interrupts/exceptions during the critical part of the
handler, i.e. before software has saved the mepc and mstatus CSRs, would cause those CSRs to be overwritten. If
desired, software can explicitly enable interrupts by setting mstatus.MIE to 1 from within the handler. However,
software should only do this after saving mepc and mstatus. There is no limit on the maximum number of nested
interrupts. Note that, after enabling interrupts by setting mstatus.MIE to 1, the current handler will be interrupted
also by lower priority interrupts. To allow higher priority interrupts only, the handler must configure mie accordingly.

The following pseudo-code snippet visualizes how to perform nested interrupt handling in software.

1 isr_handle_nested_interrupts(id) {
2 // Save mpec and mstatus to stack
3 mepc_bak = mepc;
4 mstatus_bak = mstatus;
5

6 // Save mie to stack (optional)
7 mie_bak = mie;
8

9 // Keep lower-priority interrupts disabled (optional)
10 mie = mie & ~((1 << (id + 1)) - 1);
11

12 // Re-enable interrupts
13 mstatus.MIE = 1;
14

15 // Handle interrupt
16 // This code block can be interrupted by other interrupts.
17 // ...
18

19 // Restore mstatus (this disables interrupts) and mepc
20 mstatus = mstatus_bak;
21 mepc = mepc_bak;
22

23 // Restore mie (optional)
24 mie = mie_bak;
25 }

Nesting of interrupts/exceptions in hardware is not supported.

10.4. Nested Interrupt/Exception Handling 79

CV32E40P User Manual

80 Chapter 10. Exceptions and Interrupts

CHAPTER

ELEVEN

DEBUG & TRIGGER

CV32E40P offers support for execution-based debug according to the RISC-V Debug Specification, version 0.13.2.
The main requirements for the core are described in Chapter 4: RISC-V Debug, Chapter 5: Trigger Module, and
Appendix A.2: Execution Based.

The following list shows the simplified overview of events that occur in the core when debug is requested:

1. Enters Debug Mode

2. Saves the PC to DPC

3. Updates the cause in the DCSR

4. Points the PC to the location determined by the input port dm_haltaddr_i

5. Begins executing debug control code.

Debug Mode can be entered by one of the following conditions:

• External debug event using the debug_req_i signal

• Trigger Module match event

• ebreak instruction when not in Debug Mode and when DCSR.EBREAKM == 1 (see EBREAK Behavior below)

A user wishing to perform an abstract access, whereby the user can observe or control a core’s GPR (either integer of
floating-point one) or CSR register from the hart, is done by invoking debug control code to move values to and from
internal registers to an externally addressable Debug Module (DM). Using this execution-based debug allows for the
reduction of the overall number of debug interface signals.

Note: Debug support in CV32E40P is only one of the components needed to build a System on Chip design with
run-control debug support (think “the ability to attach GDB to a core over JTAG”). Additionally, a Debug Module and
a Debug Transport Module, compliant with the RISC-V Debug Specification, are needed.

A supported open source implementation of these building blocks can be found in the RISC-V Debug Support for
PULP Cores IP block.

The CV3240P also supports a Trigger Module to enable entry into Debug Mode on a trigger event with the following
features:

• Number of trigger register(s) : 1

• Supported trigger types: instruction address match (Match Control)

The CV32E40P will not support the optional debug features 10, 11, & 12 listed in Section 4.1 of the RISC-V Debug
Specification. Specifically, a control transfer instruction’s destination location being in or out of the Program Buffer
and instructions depending on PC value shall not cause an illegal instruction.

81

https://github.com/riscv/riscv-debug-spec/blob/release/riscv-debug-release.pdf
https://github.com/pulp-platform/riscv-dbg/
https://github.com/pulp-platform/riscv-dbg/
https://github.com/riscv/riscv-debug-spec/blob/release/riscv-debug-release.pdf
https://github.com/riscv/riscv-debug-spec/blob/release/riscv-debug-release.pdf

CV32E40P User Manual

11.1 Debug Interface

Table 11.1: Debug interface signals
Signal Direction Description
debug_req_i input Request to enter Debug Mode
debug_havereset_o output Debug status: Core has been reset
debug_running_o output Debug status: Core is running
debug_halted_o output Debug status: Core is halted
dm_halt_addr_i[31:0] input Address for debugger entry
dm_exception_addr_i[31:0] input Address for debugger exception entry

debug_req_i is the “debug interrupt”, issued by the debug module when the core should enter Debug Mode. The
debug_req_i is synchronous to clk_i and requires a minimum assertion of one clock period to enter Debug Mode.
The instruction being decoded during the same cycle that debug_req_i is first asserted shall not be executed before
entering Debug Mode.

debug_havereset_o, debug_running_o and debug_mode_o signals provide the operational status of the core to
the debug module. The assertion of these signals is mutually exclusive.

debug_havereset_o is used to signal that the CV32E40P has been reset. debug_havereset_o is set high during
the assertion of rst_ni. It will be cleared low a few (unspecified) cycles after rst_ni has been deasserted and
fetch_enable_i has been sampled high.

debug_running_o is used to signal that the CV32E40P is running normally.

debug_halted_o is used to signal that the CV32E40P is in debug mode.

dm_halt_addr_i is the address where the PC jumps to for a debug entry event. When in Debug Mode, an ebreak
instruction will also cause the PC to jump back to this address without affecting status registers (see EBREAK Behavior
below).

dm_exception_addr_i is the address where the PC jumps to when an exception occurs during Debug Mode. When
in Debug Mode, the mret or uret instruction will also cause the PC to jump back to this address without affecting status
registers.

Both dm_halt_addr_i and dm_exception_addr_i must be word aligned.

11.2 Core Debug Registers

CV32E40P implements four core debug registers, namely Debug Control and Status (dcsr), Debug PC (dpc) and two
debug scratch registers. Access to these registers in non Debug Mode results in an illegal instruction.

Several trigger registers are required to adhere to specification. The following are the most relevant: Trigger Select
register (tselect), Trigger Data register 1 (tdata1), Trigger Data register 2 (tdata2) and Trigger Info (tinfo).

The TDATA1.DMODE is hardwired to a value of 1. In non Debug Mode, writes to Trigger registers are ignored and
reads reflect CSR values.

82 Chapter 11. Debug & Trigger

CV32E40P User Manual

11.3 Debug state

As specified in RISC-V Debug Specification every hart that can be selected by the Debug Module is in exactly one of
four states: nonexistent, unavailable, running or halted.

The remainder of this section assumes that the CV32E40P will not be classified as nonexistent by the integrator.

The CV32E40P signals to the Debug Module whether it is running or halted via its debug_running_o and
debug_halted_o pins respectively. Therefore, assuming that this core will not be integrated as a nonexistent
core, the CV32E40P is classified as unavailable when neither debug_running_o or debug_halted_o is asserted.
Upon rst_ni assertion the debug state will be unavailable until some cycle(s) after rst_ni has been deasserted and
fetch_enable_i has been sampled high. After this point (until a next reset assertion) the core will transition between
having its debug_halted_o or debug_running_o pin asserted depending whether the core is in debug mode or not.
Exactly one of the debug_havereset_o, debug_running_o or debug_halted_o is asserted at all times.

Figure 11.1 and show Figure 11.2 show typical examples of transitioning into the running and halted states.

Figure 11.1: Transition into debug running state

The key properties of the debug states are:

• The CV32E40P can remain in its unavailable state for an arbitrarily long time (depending on rst_ni and
fetch_enable_i).

• If debug_req_i is asserted after rst_ni deassertion and before or coincident with the assertion of
fetch_enable_i, then the CV32E40P is guaranteed to transition straight from its unavailable state into its

11.3. Debug state 83

https://github.com/riscv/riscv-debug-spec/blob/release/riscv-debug-release.pdf

CV32E40P User Manual

Figure 11.2: Transition into debug halted state

84 Chapter 11. Debug & Trigger

CV32E40P User Manual

halted state. If debug_req_i is asserted at a later point in time, then the CV32E40P might transition through
the running state on its ways to the halted state.

• If debug_req_i is asserted during the running state, the core will eventually transition into the halted state
(typically after a couple of cycles).

11.4 EBREAK Behavior

The EBREAK instruction description is distributed across several RISC-V specifications: RISC-V Debug Specifica-
tion, RISC-V Priveleged Specification, RISC-V ISA. The following is a summary of the behavior for three common
scenarios.

11.4.1 Scenario 1 : Enter Exception

Executing the EBREAK instruction when the core is not in Debug Mode and the DCSR.EBREAKM == 0 shall result
in the following actions:

• The core enters the exception handler routine located at MTVEC (Debug Mode is not entered)

• MEPC & MCAUSE are updated

To properly return from the exception, the ebreak handler will need to increment the MEPC to the next instruction.
This requires querying the size of the ebreak instruction that was used to enter the exception (16 bit c.ebreak or 32 bit
ebreak).

Note: The CV32E40P does not support MTVAL CSR register which would have saved the value of the instruction
for exceptions. This may be supported on a future core.

11.4.2 Scenario 2 : Enter Debug Mode

Executing the EBREAK instruction when the core is not in Debug Mode and the DCSR.EBREAKM == 1 shall result
in the following actions:

• The core enters Debug Mode and starts executing debug code located at dm_halt_addr_i (exception routine
not called)

• DPC & DCSR are updated

Similar to the exception scenario above, the debugger will need to increment the DPC to the next instruction before
returning from Debug Mode.

Note: The default value of DCSR.EBREAKM is 0 and the DCSR is only accessible in Debug Mode. To enter Debug
Mode from EBREAK, the user will first need to enter Debug Mode through some other means, such as from the external
debug_req_i, and set DCSR.EBREAKM.

11.4. EBREAK Behavior 85

https://github.com/riscv/riscv-debug-spec/blob/release/riscv-debug-release.pdf
https://github.com/riscv/riscv-debug-spec/blob/release/riscv-debug-release.pdf
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMFDQC-and-Priv-v1.11
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC

CV32E40P User Manual

11.4.3 Scenario 3 : Exit Program Buffer & Restart Debug Code

Executing the EBREAK instruction when the core is in Debug Mode shall result in the following actions:

• The core remains in Debug Mode and execution jumps back to the beginning of the debug code located at
dm_halt_addr_i

• none of the CSRs are modified

11.5 Interrupts during Single-Step Behavior

The CV32E40P is not compliant with the intended interpretation of the RISC-V Debug spec 0.13.2 specification when
interrupts occur during Single-Steps. However, the intended behavior has been clarified a posteriori only in version
1.0.0. See https://github.com/riscv/riscv-debug-spec/issues/510. The CV32E40P executes the first instruction of the
interrupt handler and retires it before re-entering in Debug Mode, which is prohibited in version 1.0.0 but not specified in
0.13.2. For details about the specific use-case, please refer to https://github.com/openhwgroup/core-v-verif/issues/904.

86 Chapter 11. Debug & Trigger

https://github.com/riscv/riscv-debug-spec/issues/510
https://github.com/openhwgroup/core-v-verif/issues/904

CHAPTER

TWELVE

PIPELINE DETAILS

Figure 12.1: CV32E40P Pipeline

CV32E40P has a 4-stage in-order completion pipeline, the 4 stages are:

Instruction Fetch (IF)
Fetches instructions from memory via an aligning prefetch buffer, capable of fetching 1 instruction per cycle if
the instruction side memory system allows. This prefetech buffer is able to store 2 32-b data. The IF stage also
pre-decodes RVC instructions into RV32I base instructions. See Instruction Fetch for details.

Instruction Decode (ID)
Decodes fetched instruction and performs required register file reads. Jumps are taken from the ID stage.

Execute (EX)
Executes the instructions. The EX stage contains the ALU, Multiplier and Divider. Branches (with their condition
met) are taken from the EX stage. Multi-cycle instructions will stall this stage until they are complete. The ALU,
Multiplier and Divider instructions write back their result to the register file from the EX stage. The address
generation part of the load-store-unit (LSU) is contained in EX as well.

The FPU writes back its result from EX stage as well when FPU_*_LAT is either 0 cycle or more than 1 cycle.
It is reusing register file ALU/Mult/Div write port and it has the highest priority so it will stall EX stage if there
is a conflict (when FPU_*_LAT > 1).

87

CV32E40P User Manual

Writeback (WB)
Writes the result of Load instructions back to the register file.

The FPU writes back its result from WB stage as well when FPU_*_LAT is 1 cycle. It is reusing register file
LSU write port but LSU has the highest priority over FPU if there is a conflict.

12.1 Hazards

There is a forwarding path betwen ALU, Multiplier and Divider result in EX stage and ID stage flip-flops to avoid the
need of a write-through register file. This allows to have 0-cycle penalty between those instructions and immediately
following one when using result. This is the same with 0-cycle latency FPU instructions.

But the CV32E40P experiences a 1-cycle penalty on the following hazards:

• Load data hazard in case the instruction immediately following a load uses the result of that load

• Jump register (jalr) data hazard in case that a jalr depends on the result of an immediately preceding instruction

• FPU data hazard when FPU_*_LAT = 1 in case the instruction immediately following a FPU one (except
FDIV/FSQRT) uses the result of the FPU

More than 1-cycle penalty will happen when:

• FPU data hazard of FPU_*_LAT cycles (FPU_*_LAT > 1) in case the instruction immediately following a FPU
one (except FDIV/FSQRT) uses the result of the FPU

• FPU data hazard in case the instruction immediately following FDIV/FSQRT uses the result of those instructions

Those cycles penalty can be hidden if the compiler is able to add instructions between the instructions causing this data
hazard.

12.2 Single- and Multi-Cycle Instructions

Table 12.1 shows the cycle count per instruction type. Some instructions have a variable time, this is indicated as a
range e.g. 1..32 means that the instruction takes a minimum of 1 cycle and a maximum of 32 cycles. The cycle counts
assume zero stall on the instruction-side interface and zero stall on the data-side memory interface.

88 Chapter 12. Pipeline Details

CV32E40P User Manual

Table 12.1: Cycle counts per instruction type
Instruction Type Cycles Description
Integer
Computational

1 Integer Computational Instructions are defined in the
RISCV-V RV32I Base Integer Instruction Set.

Multiplication 1 (mul)
5 (mulh, mulhsu, mulhu)

CV32E40P uses a single-cycle 32-bit x 32-bit multiplier
with a 32-bit result. The multiplications with upper-
word result take 5 cycles to compute.

Division
Remainder

3..35
3..35

The number of cycles depends on the divider operand
value (operand b), i.e. in the number of leading bits at 0.
The minimum number of cycles is 3 when the divider has
zero leading bits at 0 (e.g., 0x8000000). The maximum
number of cycles is 35 when the divider is 0.

Load/Store 1
2 (non-word aligned word trans-
fer)
2 (halfword transfer crossing
word boundary)
4 (cv.elw)

Load/Store is handled in 1 bus transaction using both EX
and WB stages for 1 cycle each. For misaligned word
transfers and for halfword transfers that cross a word
boundary 2 bus transactions are performed using EX and
WB stages for 2 cycles each. A cv.elw takes 4 cycles.

Jump 2
3 (target is a non-word-aligned
non-RVC instruction)

Jumps are performed in the ID stage. Upon a jump the
IF stage (including prefetch buffer) is flushed. The new
PC request will appear on the instruction-side memory
interface the same cycle the jump instruction is in the ID
stage.

Branch
(Not-Taken)

1 Any branch where the condition is not met will not stall.

Branch
(Taken)

3
4 (target is a non-word-aligned
non-RVC instruction)

The EX stage is used to compute the branch decision.
Any branch where the condition is met will be taken
from the EX stage and will cause a flush of the IF stage
(including prefetch buffer) and ID stage.

CSR Access 4 (mstatus, mepc, mtvec,
mcause, mcycle, minstret,
mhpmcounter*, mcycleh,
minstreth, mhpmcounter*h,
mcountinhibit, mhpmevent*,
dscr, dpc, dscratch0, dscratch1)
1 (all the other CSRs)

CSR Access Instruction are defined in ‘Zicsr’ of the
RISC-V specification.

Instruction Fence 2
3 (target is a non-word-aligned
non-RVC instruction)

The FENCE.I instruction as defined in ‘Zifencei’ of the
RISC-V specification. Internally it is implemented as a
jump to the instruction following the fence. The jump
performs the required flushing as described above.

Floating-Point
Addition or Multi-
plication

1..FPU_ADDMUL_LAT + 1 Floating-Point instructions are dispatched to the FPU.
Following instructions can be executed by the Core as
long as they are not FPU ones and there are no Read-
After-Write or Write-After-Write data hazard between
them and the destination register of the outstanding FPU
instruction. If there are enough instructions between
FPU one and the instruction using the result then cy-
cle number is 1. “Enough instruction” number is either
FPU_ADDMUL_LAT, FPU_OTHERS_LAT or 11. If
there are no instruction in between then cycle number is
the maximum value for each category.

Floating-Point
Comparison, Con-
version or Classify

1..FPU_OTHERS_LAT + 1

Single Precision
Floating-Point
Division and
Square-Root

1..12

12.2. Single- and Multi-Cycle Instructions 89

CV32E40P User Manual

90 Chapter 12. Pipeline Details

CHAPTER

THIRTEEN

INSTRUCTION FETCH

The Instruction Fetch (IF) stage of the CV32E40P is able to supply one instruction per cycle to the Instruction Decode
(ID) stage if the external bus interface is able to serve one fetch request per cycle. In case of executing compressed
instructions, on average less than one 32-bit fetch request will be needed per instruction in the ID stage.

For optimal performance and timing closure reasons, a prefetcher is used which fetches instructions via the external
bus interface from for example an externally connected instruction memory or instruction cache.

The prefetch buffer performs word-aligned 32-bit prefetches and stores the fetched words in a FIFO with a number
of entries depending of a local parameter. It is called DEPTH and can be found in cv32e40p_prefetch_buffer.sv
(default value of 2). As a result of this (speculative) prefetch, CV32E40P can fetch up to DEPTH words outside of the
code region and care should therefore be taken that no unwanted read side effects occur for such prefetches outside of
the actual code region.

Table 13.1 describes the signals that are used to fetch instructions. This interface is a simplified version of the interface
that is used by the LSU, which is described in Load-Store-Unit (LSU). The difference is that no writes are possible and
thus it needs fewer signals.

Table 13.1: Instruction Fetch interface signals
Signal Direction Description
instr_addr_o[31:0] output Address, word aligned
instr_req_o output Request valid, will stay high until instr_gnt_i is high for one cycle
instr_gnt_i input The other side accepted the request. instr_addr_o may change in

the next cycle.
instr_rvalid_i input instr_rdata_i holds valid data when instr_rvalid_i is high.

This signal will be high for exactly one cycle per request.
instr_rdata_i[31:0] input Data read from memory

13.1 Misaligned Accesses

Externally, the IF interface performs word-aligned instruction fetches only. Misaligned instruction fetches are handled
by performing two separate word-aligned instruction fetches. Internally, the core can deal with both word- and half-
word-aligned instruction addresses to support compressed instructions. The LSB of the instruction address is ignored
internally.

91

CV32E40P User Manual

13.2 Protocol

The CV32E40P instruction fetch interface does not implement the following optional OBI signals: we, be, wdata, auser,
wuser, aid, rready, err, ruser, rid. These signals can be thought of as being tied off as specified in the OBI specification.

Note: Transactions Ordering As mentioned above, instruction fetch interface can generate up to DEPTH outstanding
transactions. OBI specification states that links are always in-order from master point of view. So as the fetch interface
does not generate transaction id (aid), interconnect infrastructure should ensure that transaction responses come back
in the same order they were sent by adding its own additional information.

Figure 13.1 and Figure 13.2 show example timing diagrams of the protocol.

Figure 13.1: Back-to-back Memory Transactions

92 Chapter 13. Instruction Fetch

CV32E40P User Manual

Figure 13.2: Multiple Outstanding Memory Transactions

13.2. Protocol 93

CV32E40P User Manual

94 Chapter 13. Instruction Fetch

CHAPTER

FOURTEEN

LOAD-STORE-UNIT (LSU)

The Load-Store Unit (LSU) of the core takes care of accessing the data memory. Load and stores on words (32 bit), half
words (16 bit) and bytes (8 bit) are supported. The CV32E40P data interface can cause up to 2 outstanding transactions
and there is no FIFO to allow more outstanding requests.

Table 14.1 describes the signals that are used by the LSU.

Table 14.1: LSU interface signals
Signal Direction Description
data_addr_o[31:0] output Address
data_req_o output Request valid, will stay high until data_gnt_i is high for one cycle
data_gnt_i input The other side accepted the request. data_addr_o may change in

the next cycle.
data_we_o output Write Enable, high for writes, low for reads. Sent together with

data_req_o
data_be_o[3:0] output Byte Enable. Is set for the bytes to write/read, sent together with

data_req_o
data_wdata_o[31:0] output Data to be written to memory, sent together with data_req_o
data_rvalid_i input data_rvalid_i will be high for exactly one cycle to signal the

end of the response phase of for both read and write transac-
tions. For a read transaction data_rdata_i holds valid data when
data_rvalid_i is high.

data_rdata_i[31:0] input Data read from memory

14.1 Misaligned Accesses

The LSU never raises address-misaligned exceptions. For loads and stores where the effective address is not naturally
aligned to the referenced datatype (i.e., on a four-byte boundary for word accesses, and a two-byte boundary for halfword
accesses) the load/store is performed as two bus transactions in case that the data item crosses a word boundary. A
single load/store instruction is therefore performed as two bus transactions for the following scenarios:

• Load/store of a word for a non-word-aligned address

• Load/store of a halfword crossing a word address boundary

In both cases the transfer corresponding to the lowest address is performed first. All other scenarios can be handled
with a single bus transaction.

95

CV32E40P User Manual

14.2 Protocol

The CV32E40P data interface does not implement the following optional OBI signals: auser, wuser, aid, rready, err,
ruser, rid. These signals can be thought of as being tied off as specified in the OBI specification.

Note: Transactions Ordering As mentioned above, data interface can generate up to 2 outstanding transactions. OBI
specification states that links are always in-order from master point of view. So as the data interface does not generate
transaction id (aid), interconnect infrastructure should ensure that transaction responses come back in the same order
they were sent by adding its own additional information.

The OBI protocol that is used by the LSU to communicate with a memory works as follows.

The LSU provides a valid address on data_addr_o, control information on data_we_o, data_be_o (as well as write
data on data_wdata_o in case of a store) and sets data_req_o high. The memory sets data_gnt_i high as soon
as it is ready to serve the request. This may happen at any time, even before the request was sent. After a request has
been granted the address phase signals (data_addr_o, data_we_o, data_be_o and data_wdata_o) may be changed
in the next cycle by the LSU as the memory is assumed to already have processed and stored that information. After
granting a request, the memory answers with a data_rvalid_i set high if data_rdata_i is valid. This may happen
one or more cycles after the request has been granted. Note that data_rvalid_imust also be set high to signal the end
of the response phase for a write transaction (although the data_rdata_i has no meaning in that case). When multiple
granted requests are outstanding, it is assumed that the memory requests will be kept in-order and one data_rvalid_i
will be signalled for each of them, in the order they were issued.

Figure 14.1, Figure 14.2, Figure 14.3 and Figure 14.4 show example timing diagrams of the protocol.

14.3 Post-Incrementing Load and Store Instructions

This section is only valid if COREV_PULP = 1

Post-incrementing load and store instructions perform a load/store operation from/to the data memory while at the same
time increasing the base address by the specified offset. For the memory access, the base address without offset is used.

Post-incrementing load and stores reduce the number of required instructions to execute code with regular data access
patterns, which can typically be found in loops. These post-incrementing load/store instructions allow the address
increment to be embedded in the memory access instructions and get rid of separate instructions to handle pointers.
Coupled with hardware loop extension, these instructions allow to reduce the loop overhead significantly.

96 Chapter 14. Load-Store-Unit (LSU)

CV32E40P User Manual

Figure 14.1: Basic Memory Transaction

14.3. Post-Incrementing Load and Store Instructions 97

CV32E40P User Manual

Figure 14.2: Back-to-back Memory Transactions

98 Chapter 14. Load-Store-Unit (LSU)

CV32E40P User Manual

Figure 14.3: Slow Response Memory Transaction

14.3. Post-Incrementing Load and Store Instructions 99

CV32E40P User Manual

Figure 14.4: Multiple Outstanding Memory Transactions

100 Chapter 14. Load-Store-Unit (LSU)

CHAPTER

FIFTEEN

REGISTER FILE

Source files: rtl/cv32e40p_register_file_ff.sv

CV32E40P has 31 32-bit wide registers which form registers x1 to x31. Register x0 is statically bound to 0 and can
only be read, it does not contain any sequential logic.

The register file has three read ports and two write ports. Register file reads are performed in the ID stage. Register
file writes are performed in the WB stage.

15.1 Floating-Point Register File

If the optional FPU is instantiated, unless ZFINX is configured, the register file is extended with an additional regis-
ter bank of 32 registers f0-f31. These registers are stacked on top of the existing register file and can be accessed
concurrently with the limitation that a maximum of three operands per cycle can be read. Each of the three operands
addresses is extended with an register file select signal which is generated in the instruction decoder when a FP instruc-
tion is decoded. This additional signals determines if the operand is located in the integer or the floating point register
file.

Forwarding paths, and write-back logic are shared for the integer and floating point operations and are not replicated.

If ZFINX parameter is set, there is no additional register bank and FPU instructions are using the same register file than
for integer instructions.

101

CV32E40P User Manual

102 Chapter 15. Register File

CHAPTER

SIXTEEN

SLEEP UNIT

Source File: rtl/cv32e40p_sleep_unit.sv

The Sleep Unit contains and controls the instantiated clock gate (see Clock Gating Cell) that gates clk_i and produces
a gated clock for use by the other modules inside CV32E40P. The Sleep Unit is the only place in which clk_i itself is
used; all other modules use the gated version of clk_i.

The clock gating in the Sleep Unit is impacted by the following:

• rst_ni

• fetch_enable_i

• wfi instruction (only when COREV_CLUSTER = 0)

• cv.elw instruction (only when COREV_CLUSTER = 1)

• pulp_clock_en_i (only when COREV_CLUSTER = 1)

Table 16.1 describes the Sleep Unit interface.

Table 16.1: Sleep Unit interface signals
Signal Direction Description
pulp_clock_en_i input COREV_CLUSTER = 0:

pulp_clock_en_i is not used. Tie to 0.
COREV_CLUSTER = 1:
pulp_clock_en_i can be used to gate clk_i internal to the core when
core_sleep_o = 1.
See PULP Cluster Extension for details.

core_sleep_o output COREV_CLUSTER = 0:
Core is sleeping because of a wfi instruction. If core_sleep_o = 1 then
clk_i is gated off internally and it is allowing to gate off clk_i externally
as well (e.g. FPU).
See WFI for details.
COREV_CLUSTER = 1:
Core is sleeping because of a cv.elw instruction. If core_sleep_o =
1, then the pulp_clock_en_i directly controls the internally instanti-
ated clock gate and therefore pulp_clock_en_i can be set to 0 to in-
ternally gate off clk_i. If core_sleep_o = 0, then it is not allowed to
set pulp_clock_en_i to 0.
See PULP Cluster Extension for details.

Note: The semantics of pulp_clock_en_i and core_sleep_o depend on the COREV_CLUSTER parameter.

103

CV32E40P User Manual

16.1 Startup behavior

clk_i is internally gated off (while signaling core_sleep_o = 0) during CV32E40P startup:

• clk_i is internally gated off during rst_ni assertion

• clk_i is internally gated off from rst_ni deassertion until fetch_enable_i = 1

After initial assertion of fetch_enable_i, the fetch_enable_i signal is ignored until after a next reset assertion.

16.2 WFI

The wfi instruction can under certain conditions be used to enter sleep mode awaiting a locally enabled interrupt to
become pending. The operation of wfi is unaffected by the global interrupt bits in mstatus.

A wfi will not enter sleep mode but will be executed as a regular nop, if any of the following conditions apply:

• debug_req_i = 1 or a debug request is pending

• The core is in debug mode

• The core is performing single stepping (debug)

• The core has a trigger match (debug)

• COREV_CLUSTER = 1

If a wfi causes sleep mode entry, then core_sleep_o is set to 1 and clk_i is gated off internally. clk_i is allowed
to be gated off externally as well in this scenario. A wake-up can be triggered by any of the following:

• A locally enabled interrupt is pending

• A debug request is pending

• Core is in debug mode

Upon wake-up core_sleep_o is set to 0, clk_i will no longer be gated internally, must not be gated off externally,
and instruction execution resumes.

If one of the above wake-up conditions coincides with the wfi instruction, then sleep mode is not entered and
core_sleep_o will not become 1.

Figure 16.1 shows an example waveform for sleep mode entry because of a wfi instruction.

Figure 16.1: wfi example

104 Chapter 16. Sleep Unit

CV32E40P User Manual

16.3 PULP Cluster Extension

CV32E40P has an optional extension to enable its usage in a PULP Cluster in the PULP (Parallel Ultra Low Power)
platform. This extension is enabled by setting the COREV_CLUSTER parameter to 1. The PULP platform is organized
as clusters of multiple (typically 4 or 8) CV32E40P cores that share a tightly-coupled data memory, aimed at running
digital signal processing applications efficiently.

The mechanism via which CV32E40P cores in a PULP Cluster synchronize with each other is implemented via the
custom cv.elw instruction that performs a read transaction on an external Event Unit (which for example implements
barriers and semaphores). This read transaction to the Event Unit together with the core_sleep_o signal inform the
Event Unit that the CV32E40P is not busy and ready to go to sleep. Only in that case the Event Unit is allowed to set
pulp_clock_en_i to 0, thereby gating off clk_i internal to the core. Once the CV32E40P core is ready to start again
(e.g. when the last core meets the barrier), pulp_clock_en_i is set to 1 thereby enabling the CV32E40P to run again.

If the PULP Cluster extension is not used (COREV_CLUSTER = 0), the pulp_clock_en_i signal is not used and should
be tied to 0.

Execution of a cv.elw instructions causes core_sleep_o = 1 only if all of the following conditions are met:

• The cv.elw did not yet complete (which can be achieved by witholding data_gnt_i and/or data_rvalid_i)

• No debug request is pending

• The core is not in debug mode

• The core is not single stepping (debug)

• The core does not have a trigger match (debug)

As pulp_clock_en_i can directly impact the internal clock gate, certain requirements are imposed on the environment
of CV32E40P in case COREV_CLUSTER = 1:

• If core_sleep_o = 0, then pulp_clock_en_i must be 1

• If pulp_clock_en_i = 0, then irq_i[*] must be 0

• If pulp_clock_en_i = 0, then debug_req_i must be 0

• If pulp_clock_en_i = 0, then instr_rvalid_i must be 0

• If pulp_clock_en_i = 0, then instr_gnt_i must be 0

• If pulp_clock_en_i = 0, then data_rvalid_i must be 0

• If pulp_clock_en_i = 0, then data_gnt_i must be 0

Figure 16.2 shows an example waveform for sleep mode entry because of a cv.elw instruction.

16.3. PULP Cluster Extension 105

CV32E40P User Manual

Figure 16.2: cv.elw example

106 Chapter 16. Sleep Unit

CHAPTER

SEVENTEEN

CORE VERSIONS AND RTL FREEZE RULES

The CV32E40P is defined by the marchid and mimpid tuple. The tuple identify which sets of parameters have been
verified by OpenHW Group, and once RTL Freeze is achieved, no further non-logically equivalent changes are allowed
on that set of parameters.

The RTL Freeze version of the core is indentified by a GitHub tag with the format cv32e40p_vMAJOR.MINOR.PATCH
(e.g. cv32e40p_v1.0.0). In addition, the release date is reported in the documentation.

17.1 What happens after RTL Freeze?

17.1.1 RTL changes on verified parameters

Minor changes to the RTL on a frozen parameter set (e.g., nicer RTL code, clearer RTL code, etc) are allowed if, and
only if, they are logically equivalent to the frozen (tagged) version of the core. This is guaranteed by a CI flow that
checks that pull requests are logically equivalent to a specific tag of the core as explained here. For example, suppose
we re-write “better” a portion of the ALU that affects the frozen set of parameters of the version cv32e40p_v1.0.0, for
instance, the adder. In that case, the proposed changes are compared with the code based on cv32e40p_v1.0.0, and if
they are logically equivalent, they are accepted. Otherwise, they are rejected. See below for more case scenarios.

17.1.2 A bug is found

If a bug is found that affect the already frozen parameter set, the RTL changes required to fix such bug are non-logically
equivalent by definition. Therefore, the RTL changes are applied only on a different mimpid value and the bug and the
fix must be documented. These changes are visible by software as the mimpid has a different value. Every bug or set
of bugs found must be followed by another RTL Freeze release and a new GitHub tag.

17.1.3 RTL changes on non-verified yet parameters

If changes affecting the core on a non-frozen parameter set are required, as for example, to fix bugs found in the
communication to the FPU (e.g., affecting the core only if FPU=1), or to change the ISA Extensions decoding of PULP
instructions (e.g., affecting the core only if PULP_XPULP=1), then such changes must remain logically equivalent for
the already frozen set of parameters (except for the required mimpid update), and they must be applied on a different
mimpid value. They can be non-logically equivalent to a non-frozen set of parameters. These changes are visible by
software as the mimpid has a different value. Once the new set of parameters is verified and achieved the sign-off for
RTL freeze, a new GitHub tag and version of the core is released.

107

https://github.com/openhwgroup/cv32e40p/blob/master/.github/workflows/aws_cv32e40p.md

CV32E40P User Manual

17.1.4 PPA optimizations and new features

Non-logically equivalent PPA optimizations and new features are not allowed on a given set of RTL frozen parameters
(e.g., a faster divider). If PPA optimizations are logically-equivalent instead, they can be applied without changing the
mimpid value (as such changes are not visible in software). However, a new GitHub tag should be release and changes
documented.

Figure 17.1 shows the aforementioned rules.

Figure 17.1: Versions control of CV32E40P

17.2 Non-backward compatibility

For cv32e40p_v2.0.0, some modifications have been done on cv32e40p_top and cv32e40p_core parameters names.

It is worth mentioning that if the core in its v1 version was/is instantiated without parameters setting, backward com-
patibility is still correct as all parameters default values are set to v1 values.

17.2.1 Parameters

As RTL has been updated to fully support ratified RISC-V Zfinx, old PULP_ZFINX parameter has been renamed
ZFINX in all design and verification files.

To differentiate v1 to v2 encoding of PULP instructions, old PULP_XPULP and PULP_CLUSTER parameters have
been renamed COREV_PULP and COREV_CLUSTER in all design and verification files.

To easily change FPU instructions latencies, 2 new parameters have been added, FPU_ADDMUL_LAT for Addi-
tion/Multiplication lane and FPU_OTHERS_LAT for the other instructions (move, conversion, comparison. . .).

108 Chapter 17. Core Versions and RTL Freeze Rules

CV32E40P User Manual

17.3 Released core versions

The verified parameter sets of the core, their implementation version, GitHub tags, and dates are reported here.

17.3.1 cv32e40p_v1.0.0

Git Tag Tagged By Date Reason for Release Comment
cv32e40p_v1.0.0 Arjan Bink 2020-12-10 RTL Freeze

For this release mimpid value is fixed and is equal to 0.

It refers to the CV32E40P core verified with the following parameters:

Name Value
FPU 0
PULP_ZFINX 0
PULP_XPULP 0
PULP_CLUSTER 0

Verification of cv32e40p_v1.0.0 has been done with only following value for NUM_MHPMCOUNTERS parameter:
NUM_MHPMCOUNTERS == 1.

The list of open (waived) issues at the time of applying the cv32e40p_v1.0.0 tag can be found at:

• https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/
CV32E40P/RTL_Freeze_v1.0.0/Design_openissues.md

• https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/
CV32E40P/RTL_Freeze_v1.0.0/Verification_openissues.md

• https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/
CV32E40P/RTL_Freeze_v1.0.0/Documentation_openissues.md

17.3.2 cv32e40p_v2.0.0

Git Tag Tagged By Date Reason for Release Comment
cv32e40p_v2.0.0 RTL Freeze

For this release mimpid value is depending of parameters value.

mimpid = 0

When parameters are set with the exact same values than for cv32e40p_v1.0.0 release then mimpid value is equal to 0.

Name Value
FPU 0
ZFINX 0
COREV_PULP 0
COREV_CLUSTER 0

17.3. Released core versions 109

https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/CV32E40P/RTL_Freeze_v1.0.0/Design_openissues.md
https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/CV32E40P/RTL_Freeze_v1.0.0/Design_openissues.md
https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/CV32E40P/RTL_Freeze_v1.0.0/Verification_openissues.md
https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/CV32E40P/RTL_Freeze_v1.0.0/Verification_openissues.md
https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/CV32E40P/RTL_Freeze_v1.0.0/Documentation_openissues.md
https://github.com/openhwgroup/programs/blob/7a72508c90484a7835590a97038eb9dd53bd8c32/milestones/CV32E40P/RTL_Freeze_v1.0.0/Documentation_openissues.md

CV32E40P User Manual

mimpid = 1

When one parameter is set with a different value than for cv32e40p_v1.0.0 release then mimpid value is equal to 1.

This means either FPU, COREV_PULP or COREV_CLUSTER is set to 1.

110 Chapter 17. Core Versions and RTL Freeze Rules

CHAPTER

EIGHTEEN

GLOSSARY

• ALU: Arithmetic/Logic Unit

• ASIC: Application-Specific Integrated Circuit

• Byte: 8-bit data item

• CPU: Central Processing Unit, processor

• CSR: Control and Status Register

• Custom extension: Non-Standard extension to the RISC-V base instruction set (RISC-V Instruction Set Manual,
Volume I: User-Level ISA)

• EX: Instruction Execute

• FPGA: Field Programmable Gate Array

• FPU: Floating Point Unit

• Halfword: 16-bit data item

• Halfword aligned address: An address is halfword aligned if it is divisible by 2

• ID: Instruction Decode

• IF: Instruction Fetch (Instruction Fetch)

• ISA: Instruction Set Architecture

• KGE: kilo gate equivalents (NAND2)

• LSU: Load Store Unit (Load-Store-Unit (LSU))

• M-Mode: Machine Mode (RISC-V Instruction Set Manual, Volume II: Privileged Architecture)

• OBI: Open Bus Interface

• PC: Program Counter

• PULP platform: Parallel Ultra Low Power Platform (<https://pulp-platform.org>)

• RV32C: RISC-V Compressed (C extension)

• RV32F: RISC-V Floating Point (F extension)

• SIMD: Single Instruction/Multiple Data

• Standard extension: Standard extension to the RISC-V base instruction set (RISC-V Instruction Set Manual,
Volume I: User-Level ISA)

• WARL: Write Any Values, Reads Legal Values

• WB: Write Back of instruction results

111

https://pulp-platform.org

CV32E40P User Manual

• WLRL: Write/Read Only Legal Values

• Word: 32-bit data item

• Word aligned address: An address is word aligned if it is divisible by 4

• WPRI: Reserved Writes Preserve Values, Reads Ignore Values

112 Chapter 18. Glossary

	Changelog
	cv32e40p_v1.4.0
	cv32e40p_v1.3.2
	cv32e40p_v1.3.1
	cv32e40p_v1.3.0
	cv32e40p_v1.2.1
	cv32e40p_v1.2.0
	cv32e40p_v1.0.0_doc
	cv32e40p_v1.1.0
	cv32e40p_v1.0.0:
	pulpissimo-v1.0.0:
	pulpino-v1.0.0:

	Introduction
	License
	Bus Interfaces
	Standards Compliance
	Contents
	History
	Memory-Protocol
	RV32F Extensions
	RV32A Extensions, Security and Memory Protection
	CSR Address Re-Mapping
	Interrupts
	PULP HWLoop Spec
	Compliancy, bug fixing, code clean-up, and documentation

	References
	Contributors

	Core Integration
	Instantiation Template
	Parameters
	Interfaces
	Clock Gating Cell
	Synthesis guidelines
	ASIC Synthesis
	FPGA Synthesis
	Synthesizing with the FPU

	Floating Point Unit (FPU)
	CVFPU parameters
	FP Register File
	FP CSR
	Reminder for programmers

	Verification
	v1.0.0 verification
	v2.0.0 verification
	Simulation verification
	Formal verification
	Reports

	Tracer
	Output file
	Trace output format

	CORE-V Hardware Loop feature
	Hardware Loop constraints

	CORE-V Instruction Set Custom Extensions
	Pseudo-instructions
	Post-Increment Load & Store Instructions and Register-Register Load & Store Instructions
	Load operations
	Store operations
	Encoding

	Event Load Instruction
	Event Load operation
	Encoding

	Hardware Loops
	Hardware Loops operations
	Encoding

	ALU
	Bit Reverse Instruction
	Bit Manipulation operations
	Bit Manipulation Encoding
	General ALU operations
	General ALU Encoding
	Immediate Branching operations
	Immediate Branching Encoding

	Multiply-Accumulate
	16-Bit x 16-Bit Multiplication operations
	16-Bit x 16-Bit Multiplication pseudo-instructions
	16-Bit x 16-Bit Multiply-Accumulate operations
	32-Bit x 32-Bit Multiply-Accumulate operations
	Encoding

	SIMD
	SIMD ALU operations
	SIMD Bit Manipulation operations
	SIMD Dot Product operations
	SIMD Shuffle and Pack operations
	SIMD ALU Encoding

	SIMD Comparison operations
	SIMD Comparison Encoding
	SIMD Complex-number operations
	SIMD Complex-numbers Encoding

	Performance Counters
	Event Selector
	Controlling the counters from software
	Parametrization at synthesis time
	Time Registers (time(h))

	Control and Status Registers
	CSR Map
	CSR Descriptions
	Floating-point CSRs
	Floating-point accrued exceptions (fflags)
	Floating-point dynamic rounding mode (frm)
	Floating-point control and status register (fcsr)

	Hardware Loops CSRs
	HWLoop Start Address 0/1 (lpstart0/1)
	HWLoop End Address 0/1 (lpend0/1)
	HWLoop Count Address 0/1 (lpcount0/1)

	Other CSRs
	Machine Status (mstatus)
	Machine Interrupt Enable register (mie)
	Machine Trap-Vector Base Address (mtvec)
	Machine Scratch (mscratch)
	Machine Exception PC (mepc)
	Machine Cause (mcause)
	Machine Trap Value (mtval)
	Machine Interrupt Pending register (mip)

	Trigger CSRs
	Trigger Select register (tselect)
	Trigger Data register 1 (tdata1)
	Trigger Data register 2 (tdata2)
	Trigger Data register 3 (tdata3)
	Trigger Info (tinfo)
	Machine Context register (mcontext)

	Debug CSRs
	Debug Control and Status (dcsr)
	Debug PC (dpc)
	Debug Scratch register 0/1 (dscratch0/1)

	Performances counters
	Machine Counter-Inhibit register (mcountinhibit)
	Machine Performance Monitoring Event Selector (mhpmevent3 .. mhpmevent31)
	Machine Cycle Counter (mcycle)
	Machine Instructions-Retired Counter (minstret)
	Machine Performance Monitoring Counter (mhpmcounter3 .. mhpmcounter31)
	Upper 32 bits Machine Cycle Counter (mcycleh)
	Upper 32 bits Machine Instructions-Retired Counter (minstreth)
	Upper 32 bits Machine Performance Monitoring Counter (mhpmcounter3h .. mhpmcounter31h)
	Cycle Counter (cycle)
	Instructions-Retired Counter (instret)
	Performance Monitoring Counter (hpmcounter3 .. hpmcounter31)
	Upper 32 bits Cycle Counter (cycleh)
	Upper 32 bits Instructions-Retired Counter (instreth)
	Upper 32 bits Performance Monitoring Counter (hpmcounter3h .. hpmcounter31h)

	ID CSRs
	Machine ISA (misa)
	Machine Vendor ID (mvendorid)
	Machine Architecture ID (marchid)
	Machine Implementation ID (mimpid)
	Hardware Thread ID (mhartid)

	Non-RISC-V CSRs
	User Hardware Thread ID (uhartid)
	Privilege Level (privlv)
	ZFINX ISA (zfinx)

	Exceptions and Interrupts
	Interrupt Interface
	Interrupts
	Exceptions
	Nested Interrupt/Exception Handling

	Debug & Trigger
	Debug Interface
	Core Debug Registers
	Debug state
	EBREAK Behavior
	Scenario 1 : Enter Exception
	Scenario 2 : Enter Debug Mode
	Scenario 3 : Exit Program Buffer & Restart Debug Code

	Interrupts during Single-Step Behavior

	Pipeline Details
	Hazards
	Single- and Multi-Cycle Instructions

	Instruction Fetch
	Misaligned Accesses
	Protocol

	Load-Store-Unit (LSU)
	Misaligned Accesses
	Protocol
	Post-Incrementing Load and Store Instructions

	Register File
	Floating-Point Register File

	Sleep Unit
	Startup behavior
	WFI
	PULP Cluster Extension

	Core Versions and RTL Freeze Rules
	What happens after RTL Freeze?
	RTL changes on verified parameters
	A bug is found
	RTL changes on non-verified yet parameters
	PPA optimizations and new features

	Non-backward compatibility
	Parameters

	Released core versions
	cv32e40p_v1.0.0
	cv32e40p_v2.0.0
	mimpid = 0
	mimpid = 1

	Glossary

