
CV32E40S User Manual

OpenHW Group

Apr 19, 2023

CONTENTS:

1 Changelog 1
1.1 0.9.0 . 1
1.2 0.8.0 . 1
1.3 0.7.0 . 1
1.4 0.6.0 . 1
1.5 0.5.0 . 1
1.6 0.4.0 . 1
1.7 0.3.0 . 2
1.8 0.2.0 . 2
1.9 0.1.0 . 2

2 Introduction 3
2.1 License . 3
2.2 Standards Compliance . 4
2.3 Synthesis guidelines . 6

2.3.1 ASIC Synthesis . 6
2.3.2 FPGA Synthesis . 6

2.4 Verification . 6
2.5 Contents . 7
2.6 History . 7
2.7 References . 7
2.8 Contributors . 8

3 Getting Started with CV32E40S 9
3.1 Clock Gating Cell . 9
3.2 Register Cells . 9

4 Core Integration 11
4.1 Synthesis Optimization . 11
4.2 Instantiation Template . 11
4.3 Parameters . 14
4.4 Interfaces . 15

5 Pipeline Details 17
5.1 Multi- and Single-Cycle Instructions . 17
5.2 Hazards . 19

6 Instruction Fetch 21
6.1 Misaligned Accesses . 22
6.2 Protocol . 22
6.3 Interface integrity . 24

i

7 Load-Store-Unit (LSU) 25
7.1 Misaligned Accesses . 26
7.2 Protocol . 26
7.3 Interface integrity . 26
7.4 Physical Memory Protection (PMP) Unit . 31
7.5 Write buffer . 31

8 Xsecure extension 33
8.1 Security alerts . 33
8.2 Data independent timing . 34
8.3 Dummy instruction insertion . 34
8.4 Random instruction for hint . 35
8.5 Register file ECC . 36
8.6 Hardened PC . 36
8.7 Hardened CSRs . 36
8.8 Interface integrity . 36
8.9 Bus protocol hardening . 39
8.10 Reduction of profiling infrastructure . 39

9 Physical Memory Attribution (PMA) 41
9.1 Address range . 41
9.2 Main memory vs I/O . 41
9.3 Bufferable and Cacheable . 42
9.4 Integrity . 42
9.5 Default attribution . 43
9.6 Debug mode . 43

10 Physical Memory Protection (PMP) 45
10.1 Debug mode . 45

11 Register File 47
11.1 General Purpose Register File . 47
11.2 Error Detection . 47

12 Fence.i external handshake 49

13 Sleep Unit 51
13.1 Startup behavior . 51
13.2 WFI . 52
13.3 WFE . 52

14 Control and Status Registers 53
14.1 CSR Map . 53
14.2 CSR Descriptions . 56

14.2.1 Jump Vector Table (jvt) . 56
14.2.2 Machine Status (mstatus) . 56
14.2.3 Machine ISA (misa) . 57
14.2.4 Machine Interrupt Enable Register (mie) - CLIC == 0 . 59
14.2.5 Machine Interrupt Enable Register (mie) - CLIC == 1 . 59
14.2.6 Machine Trap-Vector Base Address (mtvec) - CLIC == 0 59
14.2.7 Machine Trap-Vector Base Address (mtvec) - CLIC == 1 60
14.2.8 Machine Trap Vector Table Base Address (mtvt) . 60
14.2.9 Machine Status (mstatush) . 61
14.2.10 Machine Counter Enable (mcounteren) . 61
14.2.11 Machine Environment Configuration (menvcfg) . 62

ii

14.2.12 Machine State Enable 0 (mstateen0) . 62
14.2.13 Machine State Enable 1 (mstateen1) . 62
14.2.14 Machine State Enable 2 (mstateen2) . 62
14.2.15 Machine State Enable 3 (mstateen3) . 63
14.2.16 Machine Environment Configuration (menvcfgh) . 63
14.2.17 Machine State Enable 0 (mstateen0h) . 63
14.2.18 Machine State Enable 1 (mstateen1h) . 63
14.2.19 Machine State Enable 2 (mstateen2h) . 64
14.2.20 Machine State Enable 3 (mstateen3h) . 64
14.2.21 Machine Counter-Inhibit Register (mcountinhibit) . 64
14.2.22 Machine Performance Monitoring Event Selector (mhpmevent3 .. mhpmevent31) 64
14.2.23 Machine Scratch (mscratch) . 65
14.2.24 Machine Exception PC (mepc) . 65
14.2.25 Machine Cause (mcause) - CLIC == 0 . 65
14.2.26 Machine Cause (mcause) - CLIC == 1 . 65
14.2.27 Machine Trap Value (mtval) . 66
14.2.28 Machine Interrupt Pending Register (mip) - CLIC == 0 . 66
14.2.29 Machine Interrupt Pending Register (mip) - CLIC == 1 . 67
14.2.30 Machine Next Interrupt Handler Address and Interrupt Enable (mnxti) 67
14.2.31 Machine Interrupt-Level Threshold (mintthresh) . 68
14.2.32 Machine Scratch Swap for Priv Mode Change (mscratchcsw) 68
14.2.33 Machine Scratch Swap for Interrupt-Level Change (mscratchcswl) 68
14.2.34 Trigger Select Register (tselect) . 69
14.2.35 Trigger Data 1 (tdata1) . 69
14.2.36 Match Control Type 2 (mcontrol) . 69
14.2.37 Exception Trigger (etrigger) . 70
14.2.38 Match Control Type 6 (mcontrol6) . 70
14.2.39 Trigger Data 1 (tdata1) - disabled view . 71
14.2.40 Trigger Data Register 2 (tdata2) . 72
14.2.41 Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x2 72
14.2.42 Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x5 72
14.2.43 Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x6 73
14.2.44 Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0xF 73
14.2.45 Trigger Info (tinfo) . 74
14.2.46 Debug Control and Status (dcsr) . 74
14.2.47 Debug PC (dpc) . 75
14.2.48 Debug Scratch Register 0/1 (dscratch0/1) . 75
14.2.49 Machine Cycle Counter (mcycle) . 75
14.2.50 Machine Instructions-Retired Counter (minstret) . 75
14.2.51 Machine Performance Monitoring Counter (mhpmcounter3 .. mhpmcounter31) 76
14.2.52 Upper 32 Machine Cycle Counter (mcycleh) . 76
14.2.53 Upper 32 Machine Instructions-Retired Counter (minstreth) 76
14.2.54 Upper 32 Machine Performance Monitoring Counter (mhpmcounter3h .. mhpmcounter31h) 76
14.2.55 CPU Control (cpuctrl) . 77
14.2.56 Secure Seed 0 . 77
14.2.57 Secure Seed 1 . 77
14.2.58 Secure Seed 2 . 78
14.2.59 Machine Vendor ID (mvendorid) . 78
14.2.60 Machine Architecture ID (marchid) . 78
14.2.61 Machine Implementation ID (mimpid) . 79
14.2.62 Hardware Thread ID (mhartid) . 79
14.2.63 Machine Configuration Pointer (mconfigptr) . 79
14.2.64 Machine Interrupt Status (mintstatus) . 79
14.2.65 Machine Security Configuration (mseccfg) . 80

iii

14.2.66 Machine Security Configuration (mseccfgh) . 80
14.2.67 PMP Configuration (pmpcfg0-pmpcfg15) . 81
14.2.68 PMP Address (pmpaddr0 - pmpaddr63) . 82

14.3 Hardened CSRs . 82

15 Performance Counters 85
15.1 Controlling the counters from software . 85
15.2 Time Registers (time(h)) . 85

16 Exceptions and Interrupts 87
16.1 Exceptions . 87
16.2 Non Maskable Interrupts . 88
16.3 CLINT Mode Interrupt Architecture . 89

16.3.1 Interrupt Interface . 89
16.3.2 Interrupts . 90
16.3.3 Nested Interrupt Handling . 91

16.4 CLIC Mode Interrupt Architecture . 91
16.4.1 Interrupt Interface . 92
16.4.2 Interrupts . 92
16.4.3 Nested Interrupt Handling . 92

17 Debug & Trigger 93
17.1 Interface . 94
17.2 Core Debug Registers . 95
17.3 Debug state . 95
17.4 EBREAK Behavior . 96

17.4.1 Scenario 1 : Enter Exception . 96
17.4.2 Scenario 2 : Enter Debug Mode . 96
17.4.3 Scenario 3 : Exit Program Buffer & Restart Debug Code 97

18 RISC-V Formal Interface 99
18.1 New Additions . 99
18.2 Compatibility . 100
18.3 Trace output file . 104
18.4 Trace output format . 104

19 CORE-V Instruction Set Extensions 105
19.1 Custom instructions . 105
19.2 Custom CSRs . 105

20 Core Versions and RTL Freeze Rules 107
20.1 What happens after RTL Freeze? . 107

20.1.1 A bug is found . 107
20.1.2 RTL changes on non-verified yet parameters . 107
20.1.3 PPA optimizations and new features . 107

20.2 Released core versions . 108

21 Glossary 109

Bibliography 111

iv

CHAPTER

ONE

CHANGELOG

1.1 0.9.0

Released on 2023-04-19 - GitHub

1.2 0.8.0

Released on 2023-01-10 - GitHub

1.3 0.7.0

Released on 2022-12-22 - GitHub

1.4 0.6.0

Released on 2022-10-13 - GitHub

1.5 0.5.0

Released on 2022-08-26 - GitHub

1.6 0.4.0

Released on 2022-06-07 - GitHub

1

https://github.com/openhwgroup/cv32e40s/releases/tag/0.9.0
https://github.com/openhwgroup/cv32e40s/releases/tag/0.8.0
https://github.com/openhwgroup/cv32e40s/releases/tag/0.7.0
https://github.com/openhwgroup/cv32e40s/releases/tag/0.6.0
https://github.com/openhwgroup/cv32e40s/releases/tag/0.5.0
https://github.com/openhwgroup/cv32e40s/releases/tag/0.4.0

CV32E40S User Manual

1.7 0.3.0

Released on 2022-03-29 - GitHub

1.8 0.2.0

Released on 2022-03-18 - GitHub

1.9 0.1.0

Released on 2022-02-16 - GitHub

2 Chapter 1. Changelog

https://github.com/openhwgroup/cv32e40s/releases/tag/0.3.0
https://github.com/openhwgroup/cv32e40s/releases/tag/0.2.0
https://github.com/openhwgroup/cv32e40s/releases/tag/0.1.0

CHAPTER

TWO

INTRODUCTION

CV32E40S is a 4-stage in-order 32-bit RISC-V processor core. Figure 2.1 shows a block diagram of the core.

Figure 2.1: Block Diagram of CV32E40S RISC-V Core

2.1 License

Copyright 2020 OpenHW Group.

Copyright 2018 ETH Zurich and University of Bologna.

Copyright and related rights are licensed under the Solderpad Hardware License, Version 0.51 (the “License”); you
may not use this file except in compliance with the License. You may obtain a copy of the License at http://solderpad.
org/licenses/SHL-0.51. Unless required by applicable law or agreed to in writing, software, hardware and materials
distributed under this License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations
under the License.

3

http://solderpad.org/licenses/SHL-0.51
http://solderpad.org/licenses/SHL-0.51

CV32E40S User Manual

2.2 Standards Compliance

CV32E40S is a standards-compliant 32-bit RISC-V processor. It follows these specifications:

Many features in the RISC-V specification are optional, and CV32E40S can be parameterized to enable or disable
some of them.

CV32E40S supports one of the following base integer instruction sets:

Table 2.1: CV32E40S Base Instruction Set
Base Integer Instruction Set Version Configurability
RV32I: RV32I Base Integer Instruction
Set

2.1 (from
[RISC-V-UNPRIV])

optionally enabled with the RV32 pa-
rameter

RV32E: RV32E Base Integer Instruction
Set

2.0 (from
[RISC-V-RV32E])

optionally enabled with the RV32 pa-
rameter

In addition, the following standard instruction set extensions are available from [RISC-V-UNPRIV],
[RISC-V-ZBA_ZBB_ZBC_ZBS], [RISC-V-CRYPTO] and [RISC-V-ZCA_ZCB_ZCMP_ZCMT].

4 Chapter 2. Introduction

CV32E40S User Manual

Table 2.2: CV32E40S Standard Instruction Set Extensions
Standard Extension Version Configurability
C: Standard Extension for Compressed Instructions 2.0 always enabled
M: Standard Extension for Integer Multiplication and Division 2.0 optionally enabled

with the M_EXT
parameter

Zicsr: Control and Status Register Instructions 2.0 always enabled
Zifencei: Instruction-Fetch Fence 2.0 always enabled
Zca: Subset of the standard Zc Code-Size Reduction extension
consisting of a subset of C with the FP load/stores removed.

v1.0.0-RC5.6 (not rat-
ified yet; version will
change)

always enabled

Zcb: Subset of the standard Zc Code-Size Reduction extension
consisting of simple operations.

v1.0.0-RC5.6 (not rat-
ified yet; version will
change)

always enabled

Zcmp: Subset of the standard Zc Code-Size Reduction exten-
sion consisting of push/pop and double move which overlap with
c.fsdsp.

v1.0.0-RC5.6 (not rat-
ified yet; version will
change)

always enabled

Zcmt: Subset of the standard Zc Code-Size Reduction exten-
sion consisting of table jump.

v1.0.0-RC5.6 (not rat-
ified yet; version will
change)

always enabled

Zba: Bit Manipulation Address calculation instructions Version 1.0.0 optionally enabled
with the B_EXT
parameter

Zbb: Bit Manipulation Base instructions Version 1.0.0 optionally enabled
with the B_EXT
parameter

Zbc: Bit Manipulation Carry-Less Multiply instructions Version 1.0.0 optionally enabled
with the B_EXT
parameter

Zbs: Bit Manipulation Bit set, Bit clear, etc. instructions Version 1.0.0 optionally enabled
with the B_EXT
parameter

Zkt: Data Independent Execution Latency Version 1.0.0 always enabled
Zbkc: Constant time Carry-Less Multiply Version 1.0.0 optionally enabled

with the B_EXT
parameter

Zmmul: Multiplication subset of the M extension Version 0.1 optionally enabled
with the M_EXT
parameter

The following custom instruction set extensions are available.

Table 2.3: CV32E40S Custom Instruction Set Extensions
Custom Extension Version Configurability
Xsecure: Security extensions 1.0 always enabled

Most content of the RISC-V privileged specification is optional. CV32E40S supports the following features according
to the RISC-V Privileged Specification [RISC-V-PRIV]:

• M-Mode and U-mode

• All CSRs listed in Control and Status Registers

2.2. Standards Compliance 5

CV32E40S User Manual

• Hardware Performance Counters as described in Performance Counters

• Trap handling supporting direct mode or vectored mode as described at Exceptions and Interrupts

• Physical Memory Attribution (PMA) as described in Physical Memory Attribution (PMA)

• Physical Memory Protection ([RISC-V-SMEPMP])

• State enable ([RISC-V-SMSTATEEN])

CV32E40S supports the following ISA extensions from the RISC-V Debug Support specification [RISC-V-DEBUG]:

• Sdext: External Debug support. Optionally enabled with the DEBUG parameter.

• Sdtrig: Trigger Module. Optionally enabled with the DBG_NUM_TRIGGERS parameter.

2.3 Synthesis guidelines

The CV32E40S core is fully synthesizable. It has been designed mainly for ASIC designs, but FPGA synthesis is
supported as well.

All the files in the rtl and rtl/include folders are synthesizable. The top level module is called cv32e40s_core.

The user must provide a clock-gating module that instantiates the clock-gating cells of the target technology. This
file must have the same interface and module name of the one provided for simulation-only purposes at bhv/
cv32e40s_sim_clock_gate.sv (see Clock Gating Cell).

The constraints/cv32e40s_core.sdc file provides an example of synthesis constraints. No synthesis scripts are
provided.

2.3.1 ASIC Synthesis

ASIC synthesis is supported for CV32E40S. The whole design is completely synchronous and uses positive-edge
triggered flip-flops. A technology specific implementation of a clock gating cell as described in Clock Gating Cell
needs to be provided.

2.3.2 FPGA Synthesis

FPGA synthesis is supported for CV32E40S. The user needs to provide a technology specific implementation of a clock
gating cell as described in Clock Gating Cell.

2.4 Verification

The verification environment (testbenches, testcases, etc.) for the CV32E40S core can be found at core-v-verif. It is
recommended that you start by reviewing the CORE-V Verification Strategy.

6 Chapter 2. Introduction

https://github.com/openhwgroup/core-v-verif
https://core-v-docs-verif-strat.readthedocs.io/en/latest/

CV32E40S User Manual

2.5 Contents

• Getting Started with CV32E40S discusses the requirements and initial steps to start using CV32E40S.

• Core Integration provides the instantiation template and gives descriptions of the design parameters as well as
the input and output ports.

• CV32E40S Pipeline described the overal pipeline structure.

• The instruction and data interfaces of CV32E40S are explained in Instruction Fetch and Load-Store-Unit (LSU),
respectively.

• Xsecure extension describes the custom Xsecure security features.

• Physical Memory Attribution (PMA) describes the Physical Memory Attribution (PMA) unit.

• Physical Memory Protection (PMP) describes the Physical Memory Protection (PMP) unit.

• The register-file is described in Register File.

• Sleep Unit describes the Sleep unit.

• The control and status registers are explained in Control and Status Registers.

• Performance Counters gives an overview of the performance monitors and event counters available in
CV32E40S.

• Exceptions and Interrupts deals with the infrastructure for handling exceptions and interrupts.

• Debug & Trigger gives a brief overview on the debug infrastructure.

• RISC-V Formal Interface gives a brief overview of the RVFI module.

• Glossary provides definitions of used terminology.

2.6 History

CV32E40S started its life as a fork of the CV32E40P from the OpenHW Group <https://www.openhwgroup.org>.

2.7 References

1. Gautschi, Michael, et al. “Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint De-
vices.” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700-2713,
Oct. 2017

2. Schiavone, Pasquale Davide, et al. “Slow and steady wins the race? A comparison of ultra-low-power RISC-
V cores for Internet-of-Things applications.” 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS 2017)

2.5. Contents 7

https://www.openhwgroup.org
https://ieeexplore.ieee.org/document/7864441
https://ieeexplore.ieee.org/document/7864441
https://ieeexplore.ieee.org/document/7864441
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976

CV32E40S User Manual

2.8 Contributors

Andreas Traber (*atraber@iis.ee.ethz.ch*)

Michael Gautschi (*gautschi@iis.ee.ethz.ch*)

Pasquale Davide Schiavone (*pschiavo@iis.ee.ethz.ch*)

Arjan Bink (*arjan.bink@silabs.com*)

Paul Zavalney (*paul.zavalney@silabs.com*)

Micrel Lab and Multitherman Lab
University of Bologna, Italy

Integrated Systems Lab
ETH Zürich, Switzerland

8 Chapter 2. Introduction

mailto:atraber@iis.ee.ethz.ch
mailto:gautschi@iis.ee.ethz.ch
mailto:pschiavo@iis.ee.ethz.ch
mailto:arjan.bink@silabs.com
mailto:paul.zavalney@silabs.com

CHAPTER

THREE

GETTING STARTED WITH CV32E40S

This page discusses initial steps and requirements to start using CV32E40S in your design.

3.1 Clock Gating Cell

CV32E40S requires clock gating cells. These cells are usually specific to the selected target technology and
thus not provided as part of the RTL design. A simulation-only version of the clock gating cell is provided in
cv32e40s_sim_clock_gate.sv. This file contains a module called cv32e40s_clock_gate that has the follow-
ing ports:

• clk_i: Clock Input

• en_i: Clock Enable Input

• scan_cg_en_i: Scan Clock Gate Enable Input (activates the clock even though en_i is not set)

• clk_o: Gated Clock Output

And the following Parameters: * LIB : Standard cell library (semantics defined by integrator)

Inside CV32E40S, the clock gating cell is used in cv32e40s_sleep_unit.sv.

The cv32e40s_sim_clock_gate.sv file is not intended for synthesis. For ASIC synthesis and FPGA synthesis the
manifest should be adapted to use a customer specific file that implements the cv32e40s_clock_gate module using
design primitives that are appropriate for the intended synthesis target technology.

3.2 Register Cells

CV32E40S requires instantiated registers for some logically redundant security features (such as Hardened CSRs).

Like clock gating cells these are specific to the target technology and are therefore not provided as part of the RTL
design. Simulation-only versions for these cells are provided in cv32e40s_sim_sffr.sv and cv32e40s_sim_sffs.sv.
cv32e40s_sim_sffr.sv contains the module cv32e40s_sffr with the following ports:

• clk : Clock

• rst_n : Reset

• d_i : Data input

• q_o : Flopped data output

And the following parameters: * LIB : Standard cell library (semantics defined by integrator)

cv32e40s_sim_sffs.sv contains the module cv32e40s_sffs with the following ports:

9

CV32E40S User Manual

• clk : Clock

• set_n : Set (i.e., reset value == 1)

• d_i : Data input

• q_o : Flopped data output

And the following parameters: * LIB : Standard cell library (semantics defined by integrator)

These files are not intended for synthesis. For ASIC synthesis and FPGA synthesis the manifest should be adapted to
use customer specific files that implement the cv32e40s_sffr and cv32e40s_sffs modules using design primitives
that are appropriate for the intended synthesis target technology.

10 Chapter 3. Getting Started with CV32E40S

CHAPTER

FOUR

CORE INTEGRATION

The main module is named cv32e40s_core and can be found in cv32e40s_core.sv. Below, the instantiation tem-
plate is given and the parameters and interfaces are described.

4.1 Synthesis Optimization

Important The CV32E40S has security features that are logically redundant and likely to be optimised away in
synthesis. Special care is therefore needed in synthesis scripts to ensure these features are preserved in the implemented
netlist.

The implementaion of following features should be checked: - CSR shadow registers - Register file ECC

Implementing a netlist test verifying these features on the final netlist is recommended.

4.2 Instantiation Template

cv32e40s_core #(
.LIB (0),
.RV32 (RV32I),
.B_EXT (NONE),
.M_EXT (M),
.DEBUG (1),
.DM_REGION_START (32'hF0000000),
.DM_REGION_END (32'hF0003FFF),
.DBG_NUM_TRIGGERS (1),
.PMP_GRANULARITY (0),
.PMP_NUM_REGIONS (0),
.PMP_PMPNCFG_RV (PMP_PMPNCFG_RV[]),
.PMP_PMPADDR_RV (PMP_PMPADDR_RV[]),
.PMP_MSECCFG_RV (PMP_MSECCFG_RV),
.PMA_NUM_REGIONS (0),
.PMA_CFG (PMA_CFG[]),
.CLIC (0),
.CLIC_ID_WIDTH (5),
.CLIC_INTTHRESHBITS (8),
.LFSR0_CFG (LFSR_CFG_DEFAULT),
.LFSR1_CFG (LFSR_CFG_DEFAULT),
.LFSR2_CFG (LFSR_CFG_DEFAULT)

) u_core (
(continues on next page)

11

CV32E40S User Manual

(continued from previous page)

// Clock and reset
.clk_i (),
.rst_ni (),
.scan_cg_en_i (),

// Configuration
.boot_addr_i (),
.mtvec_addr_i (),
.dm_halt_addr_i (),
.dm_exception_addr_i (),
.mhartid_i (),
.mimpid_patch_i (),

// Instruction memory interface
.instr_req_o (),
.instr_reqpar_o (),
.instr_gnt_i (),
.instr_gntpar_i (),
.instr_addr_o (),
.instr_memtype_o (),
.instr_prot_o (),
.instr_achk_o (),
.instr_dbg_o (),
.instr_rvalid_i (),
.instr_rvalidpar_i (),
.instr_rdata_i (),
.instr_err_i (),
.instr_rchk_i (),

// Data memory interface
.data_req_o (),
.data_reqpar_o (),
.data_gnt_i (),
.data_gntpar_i (),
.data_addr_o (),
.data_be_o (),
.data_memtype_o (),
.data_prot_o (),
.data_dbg_o (),
.data_wdata_o (),
.data_we_o (),
.data_achk_o (),
.data_rvalid_i (),
.data_rvalidpar_i (),
.data_rdata_i (),
.data_err_i (),
.data_rchk_i (),

// Cycle
.mcycle_o (),

// Interrupt interface

(continues on next page)

12 Chapter 4. Core Integration

CV32E40S User Manual

(continued from previous page)

.irq_i (),

.clic_irq_i (),

.clic_irq_id_i (),

.clic_irq_level_i (),

.clic_irq_priv_i (),

.clic_irq_shv_i (),

// Fencei flush handshake
.fencei_flush_req_o (),
.fencei_flush_ack_i (),

// Debug interface
.debug_req_i (),
.debug_havereset_o (),
.debug_running_o (),
.debug_halted_o (),
.debug_pc_valid_o (),
.debug_pc_o (),

// Alert interface
.alert_major_o (),
.alert_minor_o (),

// Special control signals
.fetch_enable_i (),
.core_sleep_o (),
.wu_wfe_i ()

);

4.2. Instantiation Template 13

CV32E40S User Manual

4.3 Parameters

Name Type/RangeDefault Description
LIB int 0 Standard cell library (semantics defined by integrator)
RV32 rv32_e RV32I Base Integer Instruction Set. RV32 = RV32I: RV32I Base Integer

Instruction Set. RV32 = RV32E: RV32E Base Integer Instruction
Set.

B_EXT b_ext_e NONE Enable Bit Manipulation support. B_EXT = B_NONE: No Bit Ma-
nipulation instructions are supported. B_EXT = ZBA_ZBB_ZBS:
Zba, Zbb and Zbs are supported. B_EXT = ZBA_ZBB_ZBC_ZBS:
Zba, Zbb, Zbc and Zbs are supported.

M_EXT m_ext_e M Enable Multiply / Divide support. M_EXT = M_NONE: No multiply
/ divide instructions are supported. M_EXT = ZMMUL: The multi-
plication subset of the M extension is supported. M_EXT = M: The M
extension is supported.

DEBUG bit 1 Is Debug supported?
DM_REGION_START logic

[31:0]
32’hF0000000Start address of Debug Module region, see Debug & Trigger

DM_REGION_END logic
[31:0]

32’hF0003FFFEnd address of Debug Module region, see Debug & Trigger

DBG_NUM_TRIGGERS int (0..4
)

1 Number of debug triggers, see Debug & Trigger

PMA_NUM_REGIONS int
(0..16)

0 Number of PMA regions

PMA_CFG[] pma_cfg_t PMA_R_DEFAULTPMA configuration. Array of pma_cfg_t with
PMA_NUM_REGIONS entries, see Physical Memory Attri-
bution (PMA)

PMP_GRANULARITY int un-
signed
(0..31)

0 Sets minimum granularity of PMP address matching to 2
PMP_GRANULARITY+2 bytes.

PMP_NUM_REGIONS int
(0..64)

0 Number of PMP regions

PMP_PMPNCFG_RV[] pmp-
ncfg_t

PMP-
NCFG_DEFAULT

Reset values for pmpncfg bitfileds in pmpcfg CSRs. Array of pmp-
ncfg_t with PMP_NUM_REGIONS entries, see Physical Memory
Protection (PMP)

PMP_PMPADDR_RV[] logic[31:0] 0 Reset values for pmpaddr CSRs. Array with
PMP_NUM_REGIONS entries, see Physical Memory Protec-
tion (PMP)

PMP_MSECCFG_RV msec-
cfg_t

0 Reset value for mseccfg CSR, see Physical Memory Protection
(PMP)

CLIC bit 0 Are Smclic, Smclicshv and Smclicconfig supported?
CLIC_ID_WIDTH int un-

signed
(1..10)

6 Width of clic_irq_id_i and clic_irq_id_o. The max-
imum number of supported interrupts in CLIC mode is
2^CLIC_ID_WIDTH. Trap vector table alignment is restricted
as described in Machine Trap Vector Table Base Address (mtvt).

CLIC_INTTHRESHBITSint un-
signed
(1..8)

8 Number of bits actually implemented in mintthresh.th field.

LFSR0 lfsr_cfg_t LFSR_CFG_DEFAULTLFSR0 configuration, see Xsecure extension.
LFSR1 lfsr_cfg_t LFSR_CFG_DEFAULTLFSR1 configuration, see Xsecure extension.
LFSR2 lfsr_cfg_t LFSR_CFG_DEFAULTLFSR2 configuration, see Xsecure extension.

14 Chapter 4. Core Integration

CV32E40S User Manual

4.4 Interfaces

Signal(s) Width Dir Description
clk_i 1 in Clock signal
rst_ni 1 in Active-low asynchronous reset
scan_cg_en_i 1 in Scan clock gate enable. Design for test (DfT) related signal. Can be

used during scan testing operation to force instantiated clock gate(s)
to be enabled. This signal should be 0 during normal / functional
operation.

boot_addr_i 32 in Boot address. First program counter after reset = boot_addr_i.
Must be word aligned. Do not change after enabling core via
fetch_enable_i

mtvec_addr_i 32 in mtvec address. Initial value for the address part of Machine Trap-
Vector Base Address (mtvec) - CLIC == 0. Must be 128-byte aligned
(i.e. mtvec_addr_i[6:0] = 0). Do not change after enabling core
via fetch_enable_i

dm_halt_addr_i 32 in Address to jump to when entering Debug Mode, see Debug & Trig-
ger. Must be word aligned. Do not change after enabling core via
fetch_enable_i

dm_exception_addr_i32 in Address to jump to when an exception occurs when executing code
during Debug Mode, see Debug & Trigger. Must be word aligned.
Do not change after enabling core via fetch_enable_i

mhartid_i 32 in Hart ID, usually static, can be read from Hardware Thread ID (mhar-
tid) CSR

mimpid_patch_i 4 in Implementation ID patch. Must be static. Readable as part of Ma-
chine Implementation ID (mimpid) CSR.

instr_* Instruction fetch interface, see Instruction Fetch
data_* Load-store unit interface, see Load-Store-Unit (LSU)
mcycle_o Cycle Counter Output
irq_* Interrupt inputs, see Exceptions and Interrupts
clic_*_i CLIC interface, see Exceptions and Interrupts
debug_* Debug interface, see Debug & Trigger
alert_* Alert interface, see Xsecure extension
fetch_enable_i 1 in Enable the instruction fetch of CV32E40S. The first instruction fetch

after reset de-assertion will not happen as long as this signal is 0.
fetch_enable_i needs to be set to 1 for at least one cycle while
not in reset to enable fetching. Once fetching has been enabled the
value fetch_enable_i is ignored.

core_sleep_o 1 out Core is sleeping, see Sleep Unit.
wu_wfe_i 1 in Wake-up for wfe, see Sleep Unit.

4.4. Interfaces 15

CV32E40S User Manual

Figure 4.1: CV32E40S Pipeline

16 Chapter 4. Core Integration

CHAPTER

FIVE

PIPELINE DETAILS

CV32E40S has a 4-stage in-order completion pipeline, the 4 stages are:

Instruction Fetch (IF)
Fetches instructions from memory via an aligning prefetch buffer, capable of fetching 1 instruction per cycle if
the instruction side memory system allows. The IF stage also pre-decodes RVC instructions into RV32I base
instructions. See Instruction Fetch for details.

Instruction Decode (ID)
Decodes fetched instruction and performs required register file reads. Jumps are taken from the ID stage.

Execute (EX)
Executes the instructions. The EX stage contains the ALU, Multiplier and Divider. Branches (with their condition
met) are taken from the EX stage. Multi-cycle instructions will stall this stage until they are complete. The address
generation part of the load-store-unit (LSU) is contained in EX as well.

Writeback (WB)
Writes the result of ALU, Multiplier, Divider, or Load instructions instructions back to the register file.

5.1 Multi- and Single-Cycle Instructions

Table 5.1 shows the cycle count per instruction type. Some instructions have a variable time, this is indicated as a range
e.g. 1..32 means that the instruction takes a minimum of 1 cycle and a maximum of 32 cycles. The cycle counts assume
zero stall on the instruction-side interface and zero stall on the data-side memory interface.

17

CV32E40S User Manual

Table 5.1: Cycle counts per instruction type
Instruc-
tion
Type

Cycles Description

Integer
Compu-
tational

1 Integer Computational Instructions are defined in the RISCV-V RV32I Base Integer Instruc-
tion Set.

CSR
Access

4 (msta-
tus,
mepc,
mtvec,
mcause,
mcycle,
min-
stret,
mhpm-
counter*,
mcy-
cleh,
min-
streth,
mhpm-
counter*h,
mcountin-
hibit,
mhp-
mevent*,
dscr,
dpc,
dscratch0,
dscratch1)
1 (all the
other
CSRs)

CSR Access Instruction are defined in ‘Zicsr’ of the RISC-V specification.

Load/Store 1
2 (non-
word
aligned
word
transfer)
2 (half-
word
transfer
crossing
word
bound-
ary)

Load/Store is handled in 1 bus transaction using both EX and WB stages for 1 cycle each.
For misaligned word transfers and for halfword transfers that cross a word boundary 2 bus
transactions are performed using EX and WB stages for 2 cycles each.

Multi-
plica-
tion

1 (mul)
4 (mulh,
mulhsu,
mulhu)

CV32E40S uses a single-cycle 32-bit x 32-bit multiplier with a 32-bit result. The multipli-
cations with upper-word result take 4 cycles to compute.

Division
Remain-
der

3 - 35
3 - 35
35
(cpuc-
trl.dataindtiming
is set)

The number of cycles depends on the divider operand value (operand b), i.e. in the number
of leading bits at 0. The minimum number of cycles is 3 when the divider has zero leading
bits at 0 (e.g., 0x8000000). The maximum number of cycles is 35 when the divider is 0

Jump 3
4 (target
is a non-
word-
aligned
non-
RVC
instruc-
tion)

Jumps are performed in the ID stage. Upon a jump the IF stage (including prefetch buffer) is
flushed. The new PC request will appear on the instruction-side memory interface the same
cycle the jump instruction is in the ID stage.

mret 3
4 (target
is a non-
word-
aligned
non-
RVC
instruc-
tion)

Mret is performed in the ID stage. Upon an mret the IF stage (including prefetch buffer) is
flushed. The new PC request will appear on the instruction-side memory interface the same
cycle the mret instruction is in the ID stage.

Branch
(Not-
Taken)

2
3 (cpuc-
trl.dataindtiming
is set)
4 (cpuc-
trl.dataindtiming
is set
and
target is
a non-
word-
aligned
non-
RVC
instruc-
tion)

Any branch where the condition is not met will not stall.

Branch
(Taken)

3
4 (target
is a non-
word-
aligned
non-
RVC
instruc-
tion)

The EX stage is used to compute the branch decision. Any branch where the condition is
met will be taken from the EX stage and will cause a flush of the IF stage (including prefetch
buffer) and ID stage.

Instruc-
tion
Fence

5
6 (target
is a non-
word-
aligned
non-
RVC
instruc-
tion)

The FENCE.I instruction as defined in ‘Zifencei’ of the RISC-V specification. Internally
it is implemented as a jump to the instruction following the fence. The jump performs the
required flushing as described above.

18 Chapter 5. Pipeline Details

CV32E40S User Manual

5.2 Hazards

The CV32E40S experiences a 1 cycle penalty on the following hazards.

• Load data hazard (in case the instruction immediately following a load uses the result of that load)

• Jump register (jalr) data hazard (in case that a jalr depends on the result of an immediately preceding non-load
instruction)

The CV32E40S experiences a 2 cycle penalty on the following hazards.

• Jump register (jalr) data hazard (in case that a jalr depends on the result of an immediately preceding load
instruction)

5.2. Hazards 19

CV32E40S User Manual

20 Chapter 5. Pipeline Details

CHAPTER

SIX

INSTRUCTION FETCH

The Instruction Fetch (IF) stage of the CV32E40S is able to supply one instruction to the Instruction Decode (ID)
stage per cycle if the external bus interface is able to serve one instruction per cycle. In case of executing compressed
instructions, on average less than one 32-bit instruction fetch will we needed per instruction in the ID stage.

For optimal performance and timing closure reasons, a prefetcher is used which fetches instructions via the external
bus interface from for example an externally connected instruction memory or instruction cache.

The prefetch unit performs word-aligned 32-bit prefetches and stores the fetched words in an alignment buffer with
three entries. As a result of this (speculative) prefetch, CV32E40S can fetch up to three words outside of the code
region and care should therefore be taken that no unwanted read side effects occur for such prefetches outside of the
actual code region.

Table 6.1 describes the signals that are used to fetch instructions. This interface is a simplified version of the interface
that is used by the LSU, which is described in Load-Store-Unit (LSU). The difference is that no writes are possible and
thus it needs fewer signals.

Table 6.1: Instruction Fetch interface signals
Signal Direction Description
instr_req_o output Request valid, will stay high until instr_gnt_i is high for one cycle
instr_reqpar_o output Odd parity signal for instr_req_o
instr_gnt_i input The other side accepted the request. instr_addr_o,

instr_memtype_o and instr_prot_o may change in the
next cycle.

instr_gntpar_i input Odd parity signal for instr_gnt_i
instr_addr_o[31:0] output Address, word aligned
instr_memtype_o[1:0] output Memory Type attributes (cacheable, bufferable)
instr_prot_o[2:0] output Protection attributes
instr_achk_o[11:0] output Checksum for address phase signals
instr_dbg_o output Debug mode access
instr_rvalid_i input instr_rdata_i and instr_err_i are valid when

instr_rvalid_i is high. This signal will be high for exactly one
cycle per request.

instr_rvalidpar_i input Odd parity signal for instr_rvalid_i
instr_rdata_i[31:0] input Data read from memory
instr_err_i input An instruction interface error occurred
instr_rchk_i[4:0] input Checksum for response phase signals

21

CV32E40S User Manual

6.1 Misaligned Accesses

Externally, the IF interface performs word-aligned instruction fetches only. Misaligned instruction fetches are handled
by performing two separate word-aligned instruction fetches. Internally, the core can deal with both word- and half-
word-aligned instruction addresses to support compressed instructions. The LSB of the instruction address is ignored
internally.

6.2 Protocol

The instruction bus interface is compliant to the OBI protocol (see [OPENHW-OBI] for detailed signal and protocol
descriptions). The CV32E40S instruction fetch interface does not implement the following optional OBI signals: we,
be, wdata, auser, wuser, aid, rready, ruser, rid. These signals can be thought of as being tied off as specified in the OBI
specification. The CV32E40S instruction fetch interface can cause up to two outstanding transactions.

Figure 6.1 and Figure 6.3 show example timing diagrams of the protocol.

Figure 6.1: Back-to-back Memory Transactions

22 Chapter 6. Instruction Fetch

CV32E40S User Manual

Figure 6.2: Back-to-back Memory Transactions with bus errors on A2/RD2 and A4/RD4

Figure 6.3: Multiple Outstanding Memory Transactions

6.2. Protocol 23

CV32E40S User Manual

Figure 6.4: Multiple Outstanding Memory Transactions with bus error on A1/RD1

6.3 Interface integrity

The CV32E40S implements interface integrity by the instr_reqpar_o, instr_gntpar_i, instr_rvalidpar_i,
instr_achk_o and instr_rchk_i signals (see see Interface integrity and [OPENHW-OBI] for further details).

24 Chapter 6. Instruction Fetch

CHAPTER

SEVEN

LOAD-STORE-UNIT (LSU)

The Load-Store Unit (LSU) of the core takes care of accessing the data memory. Load and stores on words (32 bit),
half words (16 bit) and bytes (8 bit) are supported.

Table 7.1 describes the signals that are used by the LSU.

Table 7.1: LSU interface signals
Signal Direction Description
data_req_o output Request valid, will stay high until data_gnt_i is high for one cycle
data_reqpar_o output Odd parity signal for data_req_o
data_gnt_i input The other side accepted the request. data_addr_o, data_be_o,

data_mem_type_o[2:0], data_prot_o, data_wdata_o,
data_we_o may change in the next cycle.

data_gntpar_i input Odd parity signal for data_gnt_i
data_addr_o[31:0] output Address, sent together with data_req_o.
data_be_o[3:0] output Byte Enable. Is set for the bytes to write/read, sent together with

data_req_o.
data_mem_type_o[1:0] output Memory Type attributes (cacheable, bufferable), sent together with

data_req_o.
data_prot_o[2:0] output Protection attributes, sent together with data_req_o.
data_dbg_o output Debug mode access, sent together with data_req_o.
data_wdata_o[31:0] output Data to be written to memory, sent together with data_req_o.
data_we_o output Write Enable, high for writes, low for reads. Sent together with

data_req_o.
data_achk_o[11:0] output Checksum for address phase signals
data_rvalid_i input data_rvalid_i will be high for exactly one cycle to signal the

end of the response phase of for both read and write transac-
tions. For a read transaction data_rdata_i holds valid data when
data_rvalid_i is high.

data_rvalidpar_i input Odd parity signal for data_rvalid_i
data_rdata_i[31:0] input Data read from memory. Only valid when data_rvalid_i is high.
data_err_i input A data interface error occurred. Only valid when data_rvalid_i

is high.
data_rchk_i[4:0] input Checksum for response phase signals

25

CV32E40S User Manual

7.1 Misaligned Accesses

Misaligned transaction are supported in hardware for Main memory regions, see Physical Memory Attribution (PMA).
For loads and stores in Main memory where the effective address is not naturally aligned to the referenced datatype (i.e.,
on a four-byte boundary for word accesses, and a two-byte boundary for halfword accesses) the load/store is performed
as two bus transactions in case that the data item crosses a word boundary. A single load/store instruction is therefore
performed as two bus transactions for the following scenarios:

• Load/store of a word for a non-word-aligned address

• Load/store of a halfword crossing a word address boundary

In both cases the transfer corresponding to the lowest address is performed first. All other scenarios can be handled
with a single bus transaction.

Misaligned transactions are not supported in I/O regions and will result in an exception trap when attempted, see
Exceptions and Interrupts.

7.2 Protocol

The data bus interface is compliant to the OBI protocol (see [OPENHW-OBI] for detailed signal and protocol descrip-
tions). The CV32E40S data interface does not implement the following optional OBI signals: auser, wuser, aid, rready,
ruser, rid. These signals can be thought of as being tied off as specified in the OBI specification. The CV32E40S data
interface can cause up to two outstanding transactions.

The OBI protocol that is used by the LSU to communicate with a memory works as follows.

The LSU provides a valid address on data_addr_o, control information on data_we_o, data_be_o (as well as write
data on data_wdata_o in case of a store) and sets data_req_o high. The memory sets data_gnt_i high as soon
as it is ready to serve the request. This may happen at any time, even before the request was sent. After a request has
been granted the address phase signals (data_addr_o, data_we_o, data_be_o and data_wdata_o) may be changed
in the next cycle by the LSU as the memory is assumed to already have processed and stored that information. After
granting a request, the memory answers with a data_rvalid_i set high if data_rdata_i is valid. This may happen
one or more cycles after the request has been granted. Note that data_rvalid_imust also be set high to signal the end
of the response phase for a write transaction (although the data_rdata_i has no meaning in that case). When multiple
granted requests are outstanding, it is assumed that the memory requests will be kept in-order and one data_rvalid_i
will be signalled for each of them, in the order they were issued.

Figure 7.1, Figure 7.2, Figure 7.3 and Figure 7.4 show example timing diagrams of the protocol.

7.3 Interface integrity

The CV32E40S implements interface integrity by the data_reqpar_o, data_gntpar_i, data_rvalidpar_i,
data_achk_o and data_rchk_i signals (see Interface integrity and [OPENHW-OBI] for further details).

26 Chapter 7. Load-Store-Unit (LSU)

CV32E40S User Manual

Figure 7.1: Basic Memory Transaction

7.3. Interface integrity 27

CV32E40S User Manual

Figure 7.2: Back-to-back Memory Transactions

28 Chapter 7. Load-Store-Unit (LSU)

CV32E40S User Manual

Figure 7.3: Slow Response Memory Transaction

7.3. Interface integrity 29

CV32E40S User Manual

Figure 7.4: Multiple Outstanding Memory Transactions

30 Chapter 7. Load-Store-Unit (LSU)

CV32E40S User Manual

7.4 Physical Memory Protection (PMP) Unit

The CV32E40S core has a PMP module which is optionally enabled. Such unit has a configurable number of entries
(up to 16) and supports all the modes as TOR, NAPOT and NA4. Every fetch, load and store access executed in USER
MODE are first filtered by the PMP unit which can possibly generated exceptions. For the moment, the MPRV bit in
MSTATUS as well as the LOCK mechanism in the PMP are not supported.

7.5 Write buffer

CV32E40S contains a a single entry write buffer that is used for bufferable transfers. A bufferable transfer is a write
transfer originating from a store instruction, where the write address is inside a bufferable region defined by the PMA
(Physical Memory Attribution (PMA)).

The write buffer (when not full) allows CV32E40S to proceed executing instructions without having to wait for
data_gnt_i = 1 and data_rvalid_i = 1 for these bufferable transers.

Note: On the OBI interface data_gnt_i = 1 and data_rvalid_i = 1 still need to be signaled for every transfer (as
specified in [OPENHW-OBI]), also for bufferable transfers.

Bus transfers will occur in program order, no matter if transfers are bufferable and non-bufferable. Transactions in the
write buffer must be completed before the CV32E40S is able to:

• Retire a fence instruction

• Retire a fence.i instruction

• Enter SLEEP mode

7.4. Physical Memory Protection (PMP) Unit 31

CV32E40S User Manual

32 Chapter 7. Load-Store-Unit (LSU)

CHAPTER

EIGHT

XSECURE EXTENSION

CV32E40S has a custom extension called Xsecure, which encompass the following security related features:

• Security alerts (Security alerts).

• Data independent timing (Data independent timing).

• Dummy instruction insertion (Dummy instruction insertion).

• Random instruction for hint (Random instruction for hint).

• Register file ECC (Register file ECC).

• Hardened PC (Hardened PC).

• Hardened CSRs (Hardened CSRs).

• Interface integrity (Interface integrity).

• Bus protocol hardening (Bus protocol hardening).

• Reduction of profiling infrastructure (Reduction of profiling infrastructure).

8.1 Security alerts

CV32E40S has two alert outputs for signaling security issues: A major and a minor alert. The major alert
(alert_major_o) indicates a critical security issue from which the core cannot recover. The minor alert
(alert_minor_o) indicates potential security issues, which can be monitored by a system over time. These out-
puts can be used by external hardware to trigger security incident responses like for example a system wide reset or a
memory erase. A security output is high for every clock cycle that the related security issue persists.

The following issues result in a major security alert on alert_major_o:

• Register file ECC error.

• Hardened PC error.

• Hardened CSR error.

• Non-associated instruction interface parity/checksum error.

• Non-associated data interface parity/checksum error.

• Instruction parity/checksum fault (i.e. when triggering the related exception).

• Store parity/checksum fault (i.e. when triggering the related NMI).

• Load parity/checksum fault NMI (i.e. when triggering the related NMI).

• Bus protocol error.

33

CV32E40S User Manual

The following issues result in a minor security alert on alert_minor_o:

• LFSR0, LFSR1, LFSR2 lockup.

• Instruction access fault (i.e. only when triggering the related exception).

• Illegal instruction fault (i.e. only when triggering the related exception).

• Load access fault (i.e. only when triggering the related exception).

• Store/AMO access fault (i.e. only when triggering the related exception).

• Instruction bus fault (i.e. only when triggering the related exception).

• Store bus fault NMI (i.e. only when triggering the related NMI).

• Load bus fault NMI (i.e. only when triggering the related NMI).

8.2 Data independent timing

Data independent timing is enabled by setting the dataindtiming bit in the cpuctrl CSR. This will make execution
times of all instructions independent of the input data, making it more difficult for an external observer to extract
information by observing power consumption or exploiting timing side-channels.

When dataindtiming is set, the DIV, DIVU, REM and REMU instructions will have a fixed (data independent)
latency and branches will have a fixed latency as well, regardless of whether they are taken or not. See CV32E40S
Pipeline for details.

Note that the addresses used by loads and stores will still provide a timing side-channel due to the following properties:

• Misaligned loads and stores differ in cycle count from aligned loads and stores.

• Stores to a bufferable address range react differently to wait states than stores to a non-bufferable address range.

Similarly the target address of branches and jumps will still provide a timing side-channel due to the following property:

• Branches and jumps to non-word-aligned non-RV32C instructions differ in cycle count from other branches and
jumps.

These timing side-channels can largely be mitigated by imposing (branch target and data) alignment restrictions on the
used software.

8.3 Dummy instruction insertion

Dummy instructions are inserted at random intervals into the execution pipeline if enabled via the rnddummy bit in the
cpuctrl CSR. The dummy instructions have no functional impact on the processor state, but add difficult-to-predict
timing and power disruptions to the executed code. This disruption makes it more difficult for an attacker to infer what
is being executed, and also makes it more difficult to execute precisely timed fault injection attacks.

The frequency of injected instructions can be tuned via the rnddummyfreq bits in the cpuctrl CSR.

Table 8.1: Intervals for rnddummyfreq settings
rnddummyfreq Interval
0000 Dummy instruction every 1 - 4 real instructions
0001 Dummy instruction every 1 - 8 real instructions
0011 Dummy instruction every 1 - 16 real instructions
0111 Dummy instruction every 1 - 32 real instructions
1111 Dummy instruction every 1 - 64 real instructions

34 Chapter 8. Xsecure extension

CV32E40S User Manual

Other rnddummyfreq values are legal as well, but will have a less predictable performance impact.

The frequency of the dummy instruction insertion is randomized using an LFSR (LFSR0). The dummy instruction
itself is also randomized based on LFSR0 and is constrained to add, mul, and and bltu instructions. The source data
for the dummy instructions is obtained from LFSRs (LFSR1 and LFSR2) as opposed to sourcing it from the register
file.

The initial seed and output permutation for the LFSRs can be set using the following parameters from the CV32E40S
top-level:

• LFSR0_CFG for LFSR0.

• LFSR1_CFG for LFSR1.

• LFSR2_CFG for LFSR2.

These parameters are of the type lfsr_cfg_t which are described in Table 8.2.

Table 8.2: LFSR Configuration Type lfsr_cfg_t
Field Type Description
coeffs logic[31:0] Coefficient controlling output permutation, must be non-zero
default_seed logic[31:0] Used as initial seed and for re-seeding in case of lockup, must be non-zero

Software can periodically re-seed the LFSRs with true random numbers (if available) via the secureseed* CSRs,
making the insertion interval of dummy instructions much harder to predict.

Note: The user is recommended to pick maximum length LFSR configurations and must take care that writes to the
secureseed* CSRs will not cause LFSR lockup. An LFSR lockup will result in a minor alert and will automatically
cause a re-seed of the LFSR with the default seed from the related parameter.

Note: Dummy instructions do affect the cycle count as visible via the mcycle CSR, but they are not counted as retired
instructions (so they do not affect the minstret CSR).

8.4 Random instruction for hint

The c.slli with rd=x0, nzimm!=0 RVC custom use hint is replaced by a random instruction if enabled via the
rndhint bit in the cpuctrl CSR (and will act as a regular nop otherwise). The random instruction has no functional
impact on the processor state (i.e. it is functionally equivalent to a nop, but it can result in different cycle count,
instruction fetch and power behavior). The random instruction is randomized based on LFSR0 and is constrained to
add, mul, and and bltu instructions. The source data for the random instruction is obtained from LFSRs (LFSR1 and
LFSR2) as opposed to sourcing it from the register file.

Note: The c.slli with rd=x0, nzimm!=0 instruction affects the cycle count and retired instruction counts as as
visible via the mcycle CSR and minstret CSR, independent of the value of the rndhint bit.

8.4. Random instruction for hint 35

CV32E40S User Manual

8.5 Register file ECC

ECC checking is added to all reads of the register file, where a checksum is stored for each register file word. All
1-bit and 2-bit errors will be detected. This can be useful to detect fault injection attacks since the register file covers
a reasonably large area of CV32E40S. No attempt is made to correct detected errors, but a major alert is raised upon a
detected error for the system to take action (see Security alerts).

Note: This feature is logically redundant and might get partially or fully optimized away during synthesis. Special
care might be needed and the final netlist must be checked to ensure that the ECC and correction logic is still present.
A netlist test for this feature is recommended.

8.6 Hardened PC

PC hardening can be enabled via the pcharden bit in the cpuctrl CSR.

If enabled, then during sequential execution the IF stage PC is hardened by checking that it has the correct value
compared to the ID stage with an offset determined by the compressed/uncompressed state of the instruction in ID.

In addition, the IF stage PC is then checked for correctness for potential non-sequential execution due to control transfer
instructions. For jumps (including mret) and branches, this is done by recomputing the PC target and branch decision
(incurring an additional cycle for non-taken branches).

Any error in the check for correct PC or branch/jump decision will result in a pulse on the alert_major_o pin.

8.7 Hardened CSRs

Critical CSRs (jvt, mstatus, mtvec, pmpcfg*, pmpaddr*, mseccfg*, cpuctrl, dcsr, mie, mepc, mtvt, mscratch,
mintstatus, mintthresh, mscratchcsw and mscratchcswl) have extra glitch detection enabled. For these registers
a second copy of the register is added which stores a complemented version of the main CSR data. A constant check
is made that the two copies are consistent, and a major alert is signaled if not (see Security alerts).

Note: The shadow copies are logically redundant and are therefore likely to be optimized away during synthesis.
Special care in the synthesis script is necessary (see Register Cells) and the final netlist must be checked to ensure that
the shadow copies are still present. A netlist test for this feature is recommended.

8.8 Interface integrity

The OBI ([OPENHW-OBI]) bus interfaces have associated parity and checksum signals:

• CV32E40S will generate odd parity signals instr_reqpar_o and data_reqpar_o for instr_req_o and
data_req_o respectively (see [OPENHW-OBI]).

• The environment is expected to drive instr_gntpar_i, instr_rvalidpar_i, data_gntpar_i and
data_rvalidpar_i with odd parity for instr_gnt_i, instr_rvalid_i, data_gnt_i and data_rvalid_i
respectively (see [OPENHW-OBI]).

• CV32E40S will generate checksums instr_achk_o and data_achk_o for the instruction OBI interface and
the data OBI interface respectively with checksums as defined in Table 8.3.

36 Chapter 8. Xsecure extension

CV32E40S User Manual

• The environment is expected to drive instr_rchk_i and data_rchk_i for the instruction OBI interface and
the data OBI interface respectively with checksums as defined in Table 8.4.

Table 8.3: Address phase checksum
Signal Checksum computation Comment
achk[0] Even parity(addr[7:0])
achk[1] Even parity(addr[15:8])
achk[2] Even parity(addr[23:16])
achk[3] Even parity(addr[31:24])
achk[4] Odd parity(prot[2:0],

memtype[1:0])
achk[5] Odd parity(be[3:0], we) For the instruction interface be[3:0] = 4’b1111 and we = 1’b0

is used.
achk[6] Odd parity(dbg)
achk[7] Even parity(atop[5:0]) atop[5:0] = 6’b0 as the A extension is not implemented.
achk[8] Even parity(wdata[7:0]) For the instruction interface wdata[7:0] = 8’b0.
achk[9] Even parity(wdata[15:8]) For the instruction interface wdata[15:8] = 8’b0.
achk[10] Even parity(wdata[23:16]) For the instruction interface wdata[23:16] = 8’b0.
achk[11] Even parity(wdata[31:24]) For the instruction interface wdata[31:24] = 8’b0.

Note: CV32E40S always generates its achk[11:8] bits dependent on wdata (even for read transactions).
The achk[11:8] signal bits are however not required to be checked against wdata for read transactions (see
[OPENHW-OBI]). Whether the environment performs these checks or not is platform specific.

Note: achk[11:8] are always valid for wdata[31:0] (even for sub-word transactions).

Table 8.4: Response phase checksum
Signal Checksum computation Comment
rchk[0] Even parity(rdata[7:0])
rchk[1] Even parity(rdata[15:8])
rchk[2] Even parity(rdata[23:16])
rchk[3] Even parity(rdata[31:24])
rchk[4] Even parity(err, exokay) exokay = 1’b0 as the A extension is not implemented.

Note: CV32E40S always allows its rchk[3:0] bits to be dependent on rdata (even for write transactions).
CV32E40S however only checks its rdata signal bits against rchk[3:0] for read transactions (see [OPENHW-OBI]).

Note: When CV32E40S checks its rdata signal bits against rchk[3:0] it always checks all bits (even for sub-word
transactions).

CV32E40S checks its OBI inputs against the related parity and checksum inputs (i.e. instr_gntpar_i,
data_gntpar_i, instr_rvalidpar_i, data_rvalidpar_i, instr_rchk_i and data_rchk_i) as specified in
Table 8.5. Checksum integrity checking is only performed when both globally (cpuctrl.integrity = 1) and locally
enabled (via PMA, see Integrity). Parity integrity checking is always enabled.

8.8. Interface integrity 37

CV32E40S User Manual

Table 8.5: Parity and checksum error detection
Parity / Checksum
signal

Expected value Check enabled? Observation
interval for
non-associated
interface checking

Observation inter-
val for associated
interface checking

instr_gntpar_i As defined in
[OPENHW-OBI]

Always When not in reset During instruction
access address
phase

instr_rvalidpar_i As defined in
[OPENHW-OBI]

Always When not in reset During instruction
access response
phase

data_gntpar_i As defined in
[OPENHW-OBI]

Always When not in reset During data access
address phase

data_rvalidpar_i As defined in
[OPENHW-OBI]

Always When not in reset During data access
response phase

instr_rchk_i As defined in Table
8.4

cpuctrl.
integrity =
1 and PMA at-
tributes access with
integrity = 1

During instruction
access response
phase

During instruction
access response
phase

data_rchk_i As defined in Table
8.4

cpuctrl.
integrity =
1 and PMA at-
tributes access with
integrity = 1

During data access
response phase

During data access
response phase

Interface checking is performed both associated and non-associated to specific instruction execution.

Non-associated interface checks are performed by only taking into account the bus interfaces themselves plus some
state to determine whether checksum checks are enabled for a given transaction. The used observation interval is as
wide as possible (e.g. a data interface related parity error can be detected even if no load or store instruction is actually
being executed). Observed errors will trigger an alert on alert_major_o.

Associated interface checks are the interface checks that can directly be associated to a fetched instruction or bus
transaction due to execution of a load or store instruction:

• If a parity/checksum error occurs on the OBI instruction interface while handling an instruction fetch, then
a precise exception is triggered (instruction parity fault with exception code 25) if attempting to execute that
instruction. This will then also trigger an alert on alert_major_o.

• If a parity/checksum error occurs on the OBI data interface while handling a load, then an imprecise NMI is
triggered (load parity/checksum fault NMI with exception code 1026). This will then also trigger an alert on
alert_major_o.

• If a parity/checksum error occurs on the OBI data interface while handling a store, then an imprecise NMI is
triggered (store parity/checksum fault NMI with exception code 1027). This will then also trigger an alert on
alert_major_o.

The environment is expected to check the OBI outputs of CV32E40S against the related parity and checksum outputs
(i.e. instr_reqpar_o, data_reqpar_o, instr_rchk_o and data_rchk_o) as specified in [OPENHW-OBI] and
Table 8.3. It is platform defined how the environment reacts in case of parity or checksum violations.

38 Chapter 8. Xsecure extension

CV32E40S User Manual

8.9 Bus protocol hardening

The OBI protocol (see [OPENHW-OBI]) is used as the protocol for both the instruction interface and data interface of
the CV32E40S. With respect to its handshake signals (req, gnt, rvalid) the main protocol violation is to receive a
response while there is no corresponding outstanding transaction.

An alert is raised on alert_major_o when instr_rvalid_i = 1 is received while there are no outstanding OBI
instruction transactions. An alert is raised on alert_major_o when data_rvalid_i = 1 is received while there are
no outstanding OBI data transactions.

8.10 Reduction of profiling infrastructure

As Zicntr and Zihpm are not implemented user mode code does not have access to the Base Counters and Timers
nor to the Hardware Performance Counters. Furthermore the machine mode Hardware Performance Counters
mhpmcounter3(h) - mhpmcounter31(h) and related event selector CSRs mhpmevent3 - mhpmevent31 are hard-
wired to 0.

8.9. Bus protocol hardening 39

CV32E40S User Manual

40 Chapter 8. Xsecure extension

CHAPTER

NINE

PHYSICAL MEMORY ATTRIBUTION (PMA)

The CV32E40S includes a Physical Memory Attribution (PMA) unit that allows compile time attribution of the physical
memory map. The PMA is configured through the top level parameters PMA_NUM_REGIONS and PMA_CFG[]. The num-
ber of PMA regions is configured through the PMA_NUM_REGIONS parameter. Valid values are 0-16. The configuration
array, PMA_CFG[], must consist of PMA_NUM_REGIONS entries of the type pma_cfg_t, defined in cv32e40s_pkg.sv:

typedef struct packed {
logic [31:0] word_addr_low;
logic [31:0] word_addr_high;
logic main;
logic bufferable;
logic cacheable;
logic integrity;

} pma_cfg_t;

In case of address overlap between PMA regions, the region with the lowest index in PMA_CFG[]will have priority. The
PMA can be deconfigured by setting PMA_NUM_REGIONS=0. When doing this, PMA_CFG[] should be left unconnected.

9.1 Address range

The address boundaries of a PMA region are set in word_addr_low/word_addr_high. These contain bits 33:2 of 34-
bit, word aligned addresses. To get an address match, the transfer address addrmust be in the range {word_addr_low,
2'b00} <= addr[33:0] < {word_addr_high, 2'b00}. Note that addr[33:32] = 2'b00 as the CV32E40S
does not support Sv32.

9.2 Main memory vs I/O

Memory ranges can be defined as either main (main=1) or I/O (main=0).

Code execution is allowed from main memory and main memory is considered to be idempotent. Non-aligned trans-
actions are supported in main memory. Modifiable transactions are supported in main memory.

Code execution is not allowed from I/O regions and an instruction access fault (exception code 1) is raised when
attempting to execute from such regions. I/O regions are considered to be non-idempotent and therefore the PMA
will prevent speculative accesses to such regions. Non-aligned transactions are not supported in I/O regions. An
attempt to perform a non-naturally aligned load access to an I/O region causes a precise load access fault (exception
code 5). An attempt to perform a non-naturally aligned store access to an I/O region causes a precise store access
fault (exception code 7). Modifiable/modified transactions are not supported in I/O regions. An attempt to perform a
modifiable/modified load access to an I/O region causes a precise load access fault (exception code 5). An attempt to
perform a modifiable/modified store access to an I/O region causes a precise store access fault (exception code 7).

41

CV32E40S User Manual

Note: The [RISC-V-ZCA_ZCB_ZCMP_ZCMT] specification leaves it to the core implementation whether cm.push,
cm.pop, cm.popret and cm.popretz instructions are supported to non-idempotent memories or not. In CV32E40S
the cm.push, cm.pop, cm.popret and cm.popretz instructions are not allowed to perform their load or store acceses
to non-idempotent memories (I/O) and a load access fault (exception code 5) or store access fault (exception code 7)
will occur upon the first such load or store access violating this requirement (meaning that the related pop or push
might become partially executed).

Note: Modifiable transactions are transactions which allow transformations as for example merging or splitting.
For example, a misaligned store word instruction that is handled as two subword transactions on the data interface is
considered to use modified transactions.

9.3 Bufferable and Cacheable

Accesses to regions marked as bufferable (bufferable=1) will result in the OBI mem_type[0] bit being set, except
if the access was an instruction fetch, a load, or part of an atomic memory operation. Bufferable stores will utilize the
write buffer, see Write buffer.

Accesses to regions marked as cacheable (cacheable=1) will result in the OBI mem_type[1] bit being set.

Note: The PMA must be configured such that accesses to the external debug module are non-cacheable, to enable its
program buffer to function correctly.

9.4 Integrity

Integrity checking can be globally enabled or disabled via the integrity bit in the cpuctrl CSR.

If globally enabled, then accesses to PMA regions marked with integrity=1will have their OBI input signals checked
against the instr_gntpar_i, instr_rvalidpar_i, data_gntpar_i, data_rvalidpar_i, instr_rchk_i and
data_rchk_i signals. No integrity checks are performed for accesses to regions marked with integrity=0.

Integrity check errors can lead to the following alerts, exceptions and NMIs:

• Alert on alert_major_o (see Security alerts).

• Instruction parity/checksum fault (see Exceptions and Interrupts).

• Load parity/checksum fault NMI (see Exceptions and Interrupts).

• Store parity/checksum fault NMI (see Exceptions and Interrupts).

How OBI input signals are checked is further explained in Interface integrity.

42 Chapter 9. Physical Memory Attribution (PMA)

CV32E40S User Manual

9.5 Default attribution

If the PMA is deconfigured (PMA_NUM_REGIONS=0), the entire memory range will be treated as main memory
(main=1), non-bufferable (bufferable=0), non-cacheable (cacheable=0) and no integrity (integrity=0).

If the PMA is configured (PMA_NUM_REGIONS > 0), memory regions not covered by any PMA regions are
treated as I/O memory (main=0), non-bufferable (bufferable=0), non-cacheable (cacheable=0) and no integrity
(integrity=0).

Every instruction fetch, load and store will be subject to PMA checks and failed checks will result in an exception.
PMA checks cannot be disabled. See Exceptions and Interrupts for details.

9.6 Debug mode

Accesses to the Debug Module region, as defined by the DM_REGION_START and DM_REGION_END parameters, while
in debug mode are treated specially. For such accesses the PMA configuration and default attribution rules are ignored
and the following applies instead:

• The access is treated as a main memory access.

• The access is treated as a non-bufferable access.

• The access is treated as a non-cacheable access.

• The access is treated as an access to a region without support for atomic operations.

9.5. Default attribution 43

CV32E40S User Manual

44 Chapter 9. Physical Memory Attribution (PMA)

CHAPTER

TEN

PHYSICAL MEMORY PROTECTION (PMP)

The CV32E40S includes the Physical Memory Protection (PMP) unit. The PMP is both statically and dynami-
cally configurable. The static configuration is performed through the top level parameters PMP_NUM_REGIONS and
PMP_GRANULARITY. The dynamic configuration is performed through the CSRs described in Control and Status Reg-
isters.

The PMP_GRANULARITY parameter is used to configure the minimum granularity of PMP address matching. The min-
imum granularity is 2 PMP_GRANULARITY+2 bytes, so at least 4 bytes.

The PMP_NUM_REGIONS parameter is used to configure the number of PMP regions, starting from the lowest numbered
region. All PMP CSRs are always implemented, but CSRs (or bitfields of CSRs) related to PMP entries with number
PMP_NUM_REGIONS and above are hardwired to zero.

The reset value of the PMP CSR registers can be set through the top level parameters PMP_PMPNCFG_RV[],
PMP_PMPADDR_RV[] and PMP_MSECCFG_RV. PMP_PMPNCFG_RV[] is an array of PMP_NUM_REGIONS entries of the type
pmpncfg_t. Entry N determines the reset value of the pmpNcfg bitfield in the pmpcfg CSRs. PMP_PMPADDR_RV[] is
an array of PMP_NUM_REGIONS entries of logic [31:0]. Entry N determines the reset value of the pmpaddrN CSR.
PMP_MSECCFG_RV is of the type mseccfg_t and determines the reset value of the mseccfg CSR.

The PMP is compliant to [RISC-V-PRIV] and [RISC-V-SMEPMP].

10.1 Debug mode

Accesses to the Debug Module region, as defined by the DM_REGION_START and DM_REGION_END parameters, while
in debug mode are treated specially.

In order for debug to always be possible, the PMP will not disallow fetches, loads, or stores in the Debug Module region
when the hart is in debug mode, regardless of how the PMP is configured.

45

CV32E40S User Manual

46 Chapter 10. Physical Memory Protection (PMP)

CHAPTER

ELEVEN

REGISTER FILE

Source file: rtl/cv32e40s_register_file.sv

CV32E40S has 31 32-bit wide registers which form registers x1 to x31. Register x0 is statically bound to 0 and can
only be read, it does not contain any sequential logic.

The register file has two read ports and one write port. Register file reads are performed in the ID stage. Register file
writes are performed in the WB stage.

11.1 General Purpose Register File

The general purpose register file is flip-flop-based. It uses regular, positive-edge-triggered flip-flops to implement the
registers.

11.2 Error Detection

The register file of CV32E40S has integrated error detection logic and a 6-bit hamming code for each word. This
ensures detection of up to two errors in each register file word. Detected errors trigger the core major alert output.

47

CV32E40S User Manual

48 Chapter 11. Register File

CHAPTER

TWELVE

FENCE.I EXTERNAL HANDSHAKE

CV32E40S includes an external handshake that will be exercised upon execution of the fence.i instruction. The
handshake is composed of the signals fencei_flush_req_o and fencei_flush_ack_i and can for example be
used to flush an externally connected cache.

The fencei_flush_req_o signal will go high upon executing a fence.i instruction ([RISC-V-UNPRIV])
once possible earlier store instructions have fully completed (including emptying of the the write buffer).
The fencei_flush_req_o signal will go low again the cycle after sampling both fencei_flush_req_o and
fencei_flush_ack_i high. Once fencei_flush_req_o has gone low again a branch will be taken to the instruction
after the fence.i thereby flushing possibly prefetched instructions.

Fence instructions are not impacted by the distinction between main and I/O regions (defined in Physical Memory
Attribution (PMA)) and execute as a conservative fence on all operations, ignoring the predecessor and successor fields.

Note: If the fence.i external handshake is not used by the environment of CV32E40S, then it is recommended to
tie the fencei_flush_ack_i to 1 in order to avoid stalling fence.i instructions indefinitely.

49

CV32E40S User Manual

50 Chapter 12. Fence.i external handshake

CHAPTER

THIRTEEN

SLEEP UNIT

Source File: rtl/cv32e40s_sleep_unit.sv

The Sleep Unit contains and controls the instantiated clock gate, see Clock Gating Cell, that gates clk_i and produces
a gated clock for use by the other modules inside CV32E40S. The Sleep Unit is the only place in which clk_i itself is
used; all other modules use the gated version of clk_i.

The clock gating in the Sleep Unit is impacted by the following:

• rst_ni

• fetch_enable_i

• wfi instruction

• wfe instruction

Table 13.1 describes the Sleep Unit interface.

Table 13.1: Sleep Unit interface signals
Signal Direc-

tion
Description

core_sleep_ooutput Core is sleeping because of a wfi or wfe instruction. If core_sleep_o = 1, then clk_i is
gated off internally and it is allowed to gate off clk_i externally as well. See WFI and WFE
for details.

wu_wfe_i input Wake-up signal for custom wfe instruction. See WFE for details.

13.1 Startup behavior

clk_i is internally gated off (while signaling core_sleep_o = 0) during CV32E40S startup:

• clk_i is internally gated off during rst_ni assertion

• clk_i is internally gated off from rst_ni deassertion until fetch_enable_i = 1

After initial assertion of fetch_enable_i, the fetch_enable_i signal is ignored until after a next reset assertion.

51

CV32E40S User Manual

13.2 WFI

The wfi instruction can under certain conditions be used to enter sleep mode awaiting a locally enabled interrupt to
become pending. The operation of wfi is unaffected by the global interrupt bits in mstatus.

A wfi will not enter sleep mode, but will be executed as a regular nop, if any of the following conditions apply:

• debug_req_i = 1 or a debug request is pending

• The core is in debug mode

• The core is performing single stepping (debug)

• The core has a trigger match (debug)

If a wfi causes sleep mode entry, then core_sleep_o is set to 1 and clk_i is gated off internally. clk_i is allowed
to be gated off externally as well in this scenario. A wake-up can be triggered by any of the following:

• A locally enabled interrupt is pending

• A debug request is pending

• Core is in debug mode

Upon wake-up core_sleep_o is set to 0, clk_i will no longer be gated internally, must not be gated off externally,
and instruction execution resumes.

If one of the above wake-up conditions coincides with the wfi instruction, then sleep mode is not entered and
core_sleep_o will not become 1.

Figure 13.1 shows an example waveform for sleep mode entry because of a wfi instruction.

Figure 13.1: wfi example

13.3 WFE

The custom wfe instruction behaves exactly as the wfi instruction, except that a wake-up can additionally be triggered
by asserting wu_wfe_i.

The wfe instruction is encoded as a custom SYSTEM instruction with opcode 0x8C00_0073.

52 Chapter 13. Sleep Unit

CHAPTER

FOURTEEN

CONTROL AND STATUS REGISTERS

14.1 CSR Map

Table 14.1 lists all implemented CSRs. To columns in Table 14.1 may require additional explanation:

The Parameter column identifies those CSRs that are dependent on the value of specific compile/synthesis parameters.
If these parameters are not set as indicated in Table 14.1 then the associated CSR is not implemented. If the parameter
column is empty then the associated CSR is always implemented.

The Privilege column indicates the access mode of a CSR. The first letter indicates the lowest privilege level required
to access the CSR. Attempts to access a CSR with a higher privilege level than the core is currently running in will
throw an illegal instruction exception. The remaining letters indicate the read and/or write behavior of the CSR when
accessed by the indicated or higher privilge level:

• RW: CSR is read-write. That is, CSR instructions (e.g. csrrw) may write any value and that value will be
returned on a subsequent read (unless a side-effect causes the core to change the CSR value).

• RO: CSR is read-only. Writes by CSR instructions raise an illegal instruction exception.

Writes of a non-supported value to WLRL bitfields of a RW CSR do not result in an illegal instruction exception. The
exact bitfield access types, e.g. WLRL or WARL, can be found in the RISC-V privileged specification.

Reads or writes to a CSR that is not implemented will result in an illegal instruction exception.

Table 14.1: Control and Status Register Map
CSR Ad-
dress

Name Privi-
lege

Parameter Description

Machine CSRs
0x300 mstatus MRW Machine Status (lower 32 bits).
0x301 misa MRW Machine ISA
0x304 mie MRW Machine Interrupt Enable Register
0x305 mtvec MRW Machine Trap-Handler Base Ad-

dress
0x307 mtvt MRW CLIC = 1 Machine Trap-Handler Vector Table

Base Address
0x310 mstatush MRW Machine Status (upper 32 bits).
0x320 mcountinhibit MRW (HPM) Machine Counter-Inhibit

Register
0x323 mhpmevent3 MRW (HPM) Machine Performance-

Monitoring Event Selector 3
. . . .

continues on next page

53

CV32E40S User Manual

Table 14.1 – continued from previous page
CSR Ad-
dress

Name Privi-
lege

Parameter Description

0x33F mhpmevent31 MRW (HPM) Machine Performance-
Monitoring Event Selector 31

0x340 mscratch MRW Machine Scratch
0x341 mepc MRW Machine Exception Program

Counter
0x342 mcause MRW Machine Trap Cause
0x343 mtval MRW Machine Trap Value
0x344 mip MRW Machine Interrupt Pending Register
0x345 mnxti MRW CLIC = 1 Interrupt handler address and en-

able modifier
0x347 mintthresh MRW CLIC = 1 Interrupt-level threshold
0x348 mscratchcsw MRW CLIC = 1 Conditional scratch swap on priv

mode change
0x349 mscratchcswl MRW CLIC = 1 Conditional scratch swap on level

change
0x7A0 tselect MRW DBG_NUM_TRIGGERS > 0 Trigger Select Register
0x7A1 tdata1 MRW DBG_NUM_TRIGGERS > 0 Trigger Data Register 1
0x7A2 tdata2 MRW DBG_NUM_TRIGGERS > 0 Trigger Data Register 2
0x7A4 tinfo MRW DBG_NUM_TRIGGERS > 0 Trigger Info
0x7B0 dcsr DRW DEBUG = 1 Debug Control and Status
0x7B1 dpc DRW DEBUG = 1 Debug PC
0x7B2 dscratch0 DRW DEBUG = 1 Debug Scratch Register 0
0x7B3 dscratch1 DRW DEBUG = 1 Debug Scratch Register 1
0xB00 mcycle MRW (HPM) Machine Cycle Counter
0xB02 minstret MRW (HPM) Machine Instructions-

Retired Counter
0xB03 mhpmcounter3 MRW (HPM) Machine Performance-

Monitoring Counter 3
. . . .
0xB1F mhpmcounter31 MRW (HPM) Machine Performance-

Monitoring Counter 31
0xB80 mcycleh MRW (HPM) Upper 32 Machine Cycle

Counter
0xB82 minstreth MRW (HPM) Upper 32 Machine

Instructions-Retired Counter
0xB83 mhpmcounterh3 MRW (HPM) Upper 32 Machine

Performance-Monitoring Counter 3
. . . .
0xB9F mhpmcounterh31 MRW (HPM) Upper 32 Machine

Performance-Monitoring Counter
31

0xF11 mvendorid MRO Machine Vendor ID
0xF12 marchid MRO Machine Architecture ID
0xF13 mimpid MRO Machine Implementation ID
0xF14 mhartid MRO Hardware Thread ID
0xF15 mconfigptr MRO Machine Configuration Pointer
0xFB1 mintstatus MRO CLIC = 1 Current interrupt levels

54 Chapter 14. Control and Status Registers

CV32E40S User Manual

Table 14.2: Control and Status Register Map (additional custom CSRs)
CSR Address Name Privilege Parameter Description
Machine CSRs
0xBF0 cpuctrl MRW CPU control
0xBF9 secureseed0 MRW Seed for LFSR0
0xBFA secureseed1 MRW Seed for LFSR1
0xBFC secureseed2 MRW Seed for LFSR2

Table 14.3: Control and Status Register Map (Unprivileged and User-
Level CSRs)

CSR Address Name Privilege Parameter Description
Unprivileged and User-Level CSRs
0x017 jvt URW Table jump base vector and control register

Table 14.4: Control and Status Register Map (additional CSRs for User
mode support)

CSR address Name Privilege Parameter Description
Machine CSRs
0x306 mcounteren MRW Machine Counter Enable
0x30A menvcfg MRW Machine Environment Configuration (lower 32 bits)
0x30C mstateen0 MRW Machine state enable 0 (lower 32 bits)
0x30D mstateen1 MRW Machine state enable 1 (lower 32 bits)
0x30E mstateen2 MRW Machine state enable 2 (lower 32 bits)
0x30F mstateen3 MRW Machine state enable 3 (lower 32 bits)
0x31A menvcfgh MRW Machine Environment Configuration (upper 32 bits)
0x31C mstateen0h MRW Machine state enable 0 (upper 32 bits)
0x31D mstateen1h MRW Machine state enable 1 (upper 32 bits)
0x31E mstateen2h MRW Machine state enable 2 (upper 32 bits)
0x31F mstateen3h MRW Machine state enable 3 (upper 32 bits)

Table 14.5: Control and Status Register Map (additional CSRs for PMP)
CSR Address Name Privilege Parameter Description
Machine CSRs
0x3A0 pmpcfg0 MRW Physical memory protection configuration.
0x3A1 pmpcfg1 MRW Physical memory protection configuration.
0x3A2 pmpcfg2 MRW Physical memory protection configuration.
.
0x3AF pmpcfg15 MRW Physical memory protection configuration.
0x3B0 pmpaddr0 MRW Physical memory protection address register.
0x3B1 pmpaddr1 MRW Physical memory protection address register.
0x3B2 pmpaddr2 MRW Physical memory protection address register.
.
0x3EF pmpaddr63 MRW Physical memory protection address register.
0x747 mseccfg MRW Machine Security Configuration (lower 32 bits).
0x757 mseccfgh MRW Machine Security Configuration (upper 32 bits).

14.1. CSR Map 55

CV32E40S User Manual

14.2 CSR Descriptions

What follows is a detailed definition of each of the CSRs listed above. The R/W column defines the access mode
behavior of each bit field when accessed by the privilege level specified in Table 14.1 (or a higher privilege level):

• R: read fields are not affected by CSR write instructions. Such fields either return a fixed value, or a value
determined by the operation of the core.

• RW: read/write fields store the value written by CSR writes. Subsequent reads return either the previously
written value or a value determined by the operation of the core.

• WARL: write-any-read-legal fields store only legal values written by CSR writes. The WARL keyword can
optionally be followed by a legal value (or comma separated list of legal values) enclosed in brackets. If the
legal value(s) are not specified, then all possible values are considered valid. For example, a WARL (0x0) field
supports only the value 0x0. Any value may be written, but all reads would return 0x0 regardless of the value
being written to it. A WARL field may support more than one value. If an unsupported value is (attempted to
be) written to a WARL field, the value marked with an asterix (the so-called resolution value) is written. If there
is no such predefined resolution value, then the original (legal) value of the bitfield is preserved.

• WPRI: Software should ignore values read from these fields, and preserve the values when writing.

Note: The R/W information does not impact whether CSR accesses result in illegal instruction exceptions or not.

14.2.1 Jump Vector Table (jvt)

CSR Address: 0x017

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:6 WARL BASE[31:6]: Table Jump Base Address, 64 byte aligned.
5:0 WARL (0x0) MODE: Jump table mode

Table jump base vector and control register

Note: Memory writes to the jvt based vector table require an instruction barrier (fence.i) to guarantee that they
are visible to the instruction fetch (see Fence.i external handshake and [RISC-V-UNPRIV]).

14.2.2 Machine Status (mstatus)

CSR Address: 0x300

Reset Value: 0x0000_1800

56 Chapter 14. Control and Status Registers

CV32E40S User Manual

Bit # R/W Description
31 WARL (0x0) SD. Hardwired to 0.
30:23 WPRI (0x0) Reserved. Hardwired to 0.
22 WARL (0x0) TSR. Hardwired to 0.
21 WARL TW: Timeout Wait. When set, WFI executed from user mode causes an illegal

exception. The time limit is set to 0 for CV32E40S.
20 WARL (0x0) TVM. Hardwired to 0.
19 R (0x0) MXR. Hardwired to 0.
18 R (0x0) SUM. Hardwired to 0.
17 RW MPRV: Modify Privilege. When MPRV=1, load and store memory addresses

are translated and protected as though the current privilege mode were set to
MPP.

16:15 R (0x0) XS. Hardwired to 0.
14:13 WARL (0x0) FS. Hardwired to 0.
12:11 WARL (0x0, 0x3) MPP: Machine Previous Priviledge mode. Returns the previous privilege mode.

When an mret is executed, the privilege mode is change to the value of MPP.
10:9 WPRI (0x0) VS. Hardwired to 0.
8 WARL (0x0) SPP. Hardwired to 0.
7 RW MPIE. When an exception is encountered, MPIE will be set to MIE. When the

mret instruction is executed, the value of MPIE will be stored to MIE.
6 WARL (0x0) UBE. Hardwired to 0.
5 R (0x0) SPIE. Hardwired to 0.
4 WPRI (0x0) Reserved. Hardwired to 0.
3 RW MIE: If you want to enable interrupt handling in your exception handler, set the

Interrupt Enable MIE to 1 inside your handler code.
2 WPRI (0x0) Reserved. Hardwired to 0.
1 R (0x0) SIE. Hardwired to 0.
0 WPRI (0x0) Reserved. Hardwired to 0

14.2.3 Machine ISA (misa)

CSR Address: 0x301

Reset Value: defined (based on RV32, M_EXT)

Detailed:

14.2. CSR Descriptions 57

CV32E40S User Manual

Bit # R/W Description
31:30 WARL (0x1) MXL (Machine XLEN).
29:26 WARL (0x0) (Reserved).
25 WARL (0x0) Z (Reserved).
24 WARL (0x0) Y (Reserved).
23 WARL (0x1) X (Non-standard extensions present).
22 WARL (0x0) W (Reserved).
21 WARL (0x0) V (Tentatively reserved for Vector extension).
20 WARL (0x1) U (User mode implemented).
19 WARL (0x0) T (Tentatively reserved for Transactional Memory extension).
18 WARL (0x0) S (Supervisor mode implemented).
17 WARL (0x0) R (Reserved).
16 WARL (0x0) Q (Quad-precision floating-point extension).
15 WARL (0x0) P (Packed-SIMD extension).
14 WARL (0x0) O (Reserved).
13 WARL (0x0) N
12 WARL M (Integer Multiply/Divide extension).
11 WARL (0x0) L (Tentatively reserved for Decimal Floating-Point extension).
10 WARL (0x0) K (Reserved).
9 WARL (0x0) J (Tentatively reserved for Dynamically Translated Languages extension).
8 WARL I (RV32I/64I/128I base ISA).
7 WARL (0x0) H (Hypervisor extension).
6 WARL (0x0) G (Additional standard extensions present).
5 WARL (0x0) F (Single-precision floating-point extension).
4 WARL E (RV32E base ISA).
3 WARL (0x0) D (Double-precision floating-point extension).
2 WARL (0x1) C (Compressed extension).
1 WARL (0x0) B Reserved.
0 WARL (0x0) A (Atomic extension).

All bitfields in the misa CSR read as 0 except for the following:

• C = 1

• I = 1 if RV32 == RV32I

• E = 1 if RV32 == RV32E

• M = 1 if M_EXT == M

• MXL = 1 (i.e. XLEN = 32)

• U = 1

• X = 1

58 Chapter 14. Control and Status Registers

CV32E40S User Manual

14.2.4 Machine Interrupt Enable Register (mie) - CLIC == 0

CSR Address: 0x304

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:16 RW Machine Fast Interrupt Enables: Set bit x to enable interrupt irq_i[x].
15:12 WARL (0x0) Reserved. Hardwired to 0.
11 RW MEIE: Machine External Interrupt Enable, if set, irq_i[11] is enabled.
10 WARL (0x0) Reserved. Hardwired to 0.
9 WARL (0x0) SEIE. Hardwired to 0
8 WARL (0x0) Reserved. Hardwired to 0.
7 RW MTIE: Machine Timer Interrupt Enable, if set, irq_i[7] is enabled.
6 WARL (0x0) Reserved. Hardwired to 0.
5 WARL (0x0) STIE. Hardwired to 0.
4 WARL (0x0) Reserved. Hardwired to 0.
3 RW MSIE: Machine Software Interrupt Enable, if set, irq_i[3] is enabled.
2 WARL (0x0) Reserved. Hardwired to 0.
1 WARL (0x0) SSIE. Hardwired to 0.
0 WARL (0x0) Reserved. Hardwired to 0.

14.2.5 Machine Interrupt Enable Register (mie) - CLIC == 1

CSR Address: 0x304

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Reserved. Hardwired to 0.

Note: In CLIC mode the mie CSR is replaced by separate memory-mapped interrupt enables (clicintie).

14.2.6 Machine Trap-Vector Base Address (mtvec) - CLIC == 0

CSR Address: 0x305

Reset Value: Defined

Detailed:

Bit # R/W Description
31:7 WARL BASE[31:7]: Trap-handler base address, always aligned to 128 bytes.
6:2 WARL (0x0) BASE[6:2]: Trap-handler base address, always aligned to 128 bytes.

mtvec[6:2] is hardwired to 0x0.
1:0 WARL (0x0, 0x1) MODE: Interrupt handling mode. 0x0 = non-vectored CLINT mode, 0x1 =

vectored CLINT mode.

14.2. CSR Descriptions 59

CV32E40S User Manual

The initial value of mtvec is equal to {mtvec_addr_i[31:7], 5’b0, 2’b01}.

When an exception or an interrupt is encountered, the core jumps to the corresponding handler using the content of the
mtvec[31:7] as base address. Both non-vectored CLINT mode and vectored CLINT mode are supported.

Upon an NMI in non-vectored CLINT mode the core jumps to mtvec[31:7], 5’h0, 2’b00} (i.e. index 0). Upon an NMI
in vectored CLINT mode the core jumps to mtvec[31:7], 5’hF, 2’b00} (i.e. index 15).

Note: For NMIs the exception codes in the mcause CSR do not match the table index as for regular interrupts.

Note: Memory writes to the mtvec based vector table require an instruction barrier (fence.i) to guarantee that they
are visible to the instruction fetch (see Fence.i external handshake and [RISC-V-UNPRIV]).

14.2.7 Machine Trap-Vector Base Address (mtvec) - CLIC == 1

CSR Address: 0x305

Reset Value: Defined

Detailed:

Bit # R/W Description
31:7 WARL BASE[31:7]: Trap-handler base address, always aligned to 128 bytes.
6 WARL (0x0) BASE[6]: Trap-handler base address, always aligned to 128 bytes. mtvec[6]

is hardwired to 0x0.
5:2 WARL (0x0) SUBMODE: Sub mode. Reserved for future use.
1:0 WARL (0x3) MODE: Interrupt handling mode. Always CLIC mode.

The initial value of mtvec is equal to {mtvec_addr_i[31:7], 1’b0, 6’b000011}.

Upon an NMI in CLIC mode the core jumps to mtvec[31:7], 5’h0, 2’b00} (i.e. index 0).

Note: Memory writes to the mtvec based vector table require an instruction barrier (fence.i) to guarantee that they
are visible to the instruction fetch (see Fence.i external handshake and [RISC-V-UNPRIV]).

14.2.8 Machine Trap Vector Table Base Address (mtvt)

CSR Address: 0x307

Reset Value: 0x0000_0000

Include Condition: CLIC = 1

Detailed:

60 Chapter 14. Control and Status Registers

CV32E40S User Manual

Bit # R/W Description
31:N RW BASE[31:N]: Trap-handler vector table base address. N = maximum(6,

2+CLIC_ID_WIDTH). See note below for alignment restrictions.
N-1:6 WARL (0x0) BASE[N-1:6]: Trap-handler vector table base address. This field is only defined

if N > 6. N = maximum(6, 2+CLIC_ID_WIDTH). mtvt[N-1:6] is hardwired
to 0x0. See note below for alignment restrictions.

5:0 R (0x0) Reserved. Hardwired to 0.

Note: The mtvt CSR holds the base address of the trap vector table, which has its alignment restricted to both at least
64-bytes and to 2^(2+CLIC_ID_WIDTH) bytes or greater power-of-two boundary. For example if CLIC_ID_WIDTH =
8, then 256 CLIC interrupts are supported and the trap vector table is aligned to 1024 bytes, and therefore BASE[9:6]
will be WARL (0x0).

Note: Memory writes to the mtvt based vector table require an instruction barrier (fence.i) to guarantee that they
are visible to the instruction fetch (see Fence.i external handshake and [RISC-V-UNPRIV]).

14.2.9 Machine Status (mstatush)

CSR Address: 0x310

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31:6 WPRI (0x0) Reserved. Hardwired to 0.
5 WARL (0x0) MBE. Hardwired to 0.
4 WARL (0x0) SBE. Hardwired to 0.
3:0 WPRI (0x0) Reserved. Hardwired to 0.

14.2.10 Machine Counter Enable (mcounteren)

CSR Address: 0x306

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

Note: mcounteren is WARL (0x0) as the Zicntr and Zihpm extensions are not supported on CV32E40S.

14.2. CSR Descriptions 61

CV32E40S User Manual

14.2.11 Machine Environment Configuration (menvcfg)

CSR Address: 0x30A

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31:8 WPRI (0x0) Reserved. Hardwired to 0.
7 R (0x0) CBZE. Hardwired to 0.
6 R (0x0) CBCFE. Hardwired to 0.
5:4 R (0x0) CBIE. Hardwired to 0.
3:1 R (0x0) Reserved. Hardwired to 0.
0 R (0x0) FIOM. Hardwired to 0.

14.2.12 Machine State Enable 0 (mstateen0)

CSR Address: 0x30C

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:3 WARL (0x0) Hardwired to 0.
2 RW Controls user mode access to the jvtCSR and whether the cm.jt and cm.jalt

instructions cause an illegal instruction trap in user mode or not.
1:0 WARL (0x0) Hardwired to 0.

14.2.13 Machine State Enable 1 (mstateen1)

CSR Address: 0x30D

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

14.2.14 Machine State Enable 2 (mstateen2)

CSR Address: 0x30E

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

62 Chapter 14. Control and Status Registers

CV32E40S User Manual

14.2.15 Machine State Enable 3 (mstateen3)

CSR Address: 0x30F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

14.2.16 Machine Environment Configuration (menvcfgh)

CSR Address: 0x31A

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31 R (0x0) STCE. Hardwired to 0
30:0 WPRI (0x0) Reserved. Hardwired to 0.

14.2.17 Machine State Enable 0 (mstateen0h)

CSR Address: 0x31C

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

14.2.18 Machine State Enable 1 (mstateen1h)

CSR Address: 0x31D

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

14.2. CSR Descriptions 63

CV32E40S User Manual

14.2.19 Machine State Enable 2 (mstateen2h)

CSR Address: 0x31E

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

14.2.20 Machine State Enable 3 (mstateen3h)

CSR Address: 0x31F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

14.2.21 Machine Counter-Inhibit Register (mcountinhibit)

CSR Address: 0x320

Reset Value: 0x0000_0005

The performance counter inhibit control register. The default value is to inihibit all implemented counters out of reset.
The bit returns a read value of 0 for non implemented counters.

Detailed:

Bit# R/W Description
31:3 WARL (0x0) Hardwired to 0.
2 WARL IR: minstret inhibit
1 WARL (0x0) Hardwired to 0.
0 WARL CY: mcycle inhibit

14.2.22 Machine Performance Monitoring Event Selector (mhpmevent3 ..
mhpmevent31)

CSR Address: 0x323 - 0x33F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31:0 WARL (0x0) Hardwired to 0.

64 Chapter 14. Control and Status Registers

CV32E40S User Manual

14.2.23 Machine Scratch (mscratch)

CSR Address: 0x340

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 RW Scratch value

14.2.24 Machine Exception PC (mepc)

CSR Address: 0x341

Reset Value: 0x0000_0000

Bit # R/W Description
31:1 WARL Machine Expection Program Counter 31:1
0 WARL (0x0) Hardwired to 0.

When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception
address. When a mret instruction is executed, the value from MEPC replaces the current program counter.

14.2.25 Machine Cause (mcause) - CLIC == 0

CSR Address: 0x342

Reset Value: 0x0000_0000

Bit # R/W Description
31 RW INTERRUPT. This bit is set when the exception was triggered by an interrupt.
30:11 WLRL (0x0) EXCCODE[30:11]. Hardwired to 0.
10:0 WLRL EXCCODE[10:0]. See note below.

Note: Software accesses to mcause[10:0] must be sensitive to the WLRL field specification of this CSR. For example,
when mcause[31] is set, writing 0x1 to mcause[1] (Supervisor software interrupt) will result in UNDEFINED behavior.

14.2.26 Machine Cause (mcause) - CLIC == 1

CSR Address: 0x342

Reset Value: 0x3000_0000

14.2. CSR Descriptions 65

CV32E40S User Manual

Bit # R/W Description
31 RW INTERRUPT. This bit is set when the exception was triggered by an interrupt.
30 RW MINHV. Set by hardware at start of hardware vectoring, cleared by hardware at

end of successful hardware vectoring.
29:28

WARL (0x0,
0x3)

MPP: Previous privilege mode. Same as mstatus.MPP

27 RW MPIE: Previous interrupt enable. Same as mstatus.MPIE
26:24 RW Reserved. Hardwired to 0.
23:16 RW MPIL: Previous interrupt level.
15:12 WARL (0x0) Reserved. Hardwired to 0.
11 WLRL (0x0) EXCCODE[11]
10:0 WLRL EXCCODE[10:0]

Note: mcause.MPP and mstatus.MPP mirror each other. mcause.MPIE and mstatus.MPIE mirror each other.
Reading or writing the fields MPP/MPIE in mcause is equivalent to reading or writing the homonymous field in mstatus.

14.2.27 Machine Trap Value (mtval)

CSR Address: 0x343

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Hardwired to 0.

14.2.28 Machine Interrupt Pending Register (mip) - CLIC == 0

CSR Address: 0x344

Reset Value: 0x0000_0000

Detailed:

66 Chapter 14. Control and Status Registers

CV32E40S User Manual

Bit # R/W Description
31:16 R Machine Fast Interrupt Enables: Interrupt irq_i[x] is pending.
15:12 WARL (0x0) Reserved. Hardwired to 0.
11 R MEIP: Machine External Interrupt Enable, if set, irq_i[11] is pending.
10 WARL (0x0) Reserved. Hardwired to 0.
9 WARL (0x0) SEIP. Hardwired to 0
8 WARL (0x0) Reserved. Hardwired to 0.
7 R MTIP: Machine Timer Interrupt Enable, if set, irq_i[7] is pending.
6 WARL (0x0) Reserved. Hardwired to 0.
5 WARL (0x0) STIP. Hardwired to 0.
4 WARL (0x0) Reserved. Hardwired to 0.
3 R MSIP: Machine Software Interrupt Enable, if set, irq_i[3] is pending.
2 WARL (0x0) Reserved. Hardwired to 0.
1 WARL (0x0) SSIP. Hardwired to 0.
0 WARL (0x0) Reserved. Hardwired to 0.

14.2.29 Machine Interrupt Pending Register (mip) - CLIC == 1

CSR Address: 0x344

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Reserved. Hardwired to 0.

Note: In CLIC mode the mip CSR is replaced by separate memory-mapped interrupt enables (clicintip).

14.2.30 Machine Next Interrupt Handler Address and Interrupt Enable (mnxti)

CSR Address: 0x345

Reset Value: 0x0000_0000

Include Condition: CLIC = 1

Detailed:

Bit # R/W Description
31:0 RW MNXTI: Machine Next Interrupt Handler Address and Interrupt Enable.

This register can be used by the software to service the next interrupt when it is in the same privilege mode, without
incurring the full cost of an interrupt pipeline flush and context save/restore.

Note: The mnxti CSR is only designed to be used with the CSRR (CSRRS rd,csr,x0), CSRRSI, and CSRRCI in-
structions. Accessing the mnxti CSR using any other CSR instruction form is reserved and CV32E40S will treat such
instruction as illegal instructions. In addition, use of mnxti with CSRRSI with non-zero uimm values for bits 0, 2, and
4 are reserved for future use and will also be treated as illegal instructions.

14.2. CSR Descriptions 67

CV32E40S User Manual

14.2.31 Machine Interrupt-Level Threshold (mintthresh)

CSR Address: 0x347

Reset Value: 0x0000_0000

Include Condition: CLIC = 1

Detailed:

Bit # R/W Description
31:8 R (0x0) Reserved. Hardwired to 0.
7:0 WARL TH: Threshold

This register holds the machine mode interrupt level threshold.

Note: The CLIC_INTTHRESHBITS parameter specifies the number of bits actually implemented in the mintthresh.
th field. The implemented bits are kept left justified in the most-significant bits of the 8-bit field, with the lower
unimplemented bits treated as hardwired to 1.

14.2.32 Machine Scratch Swap for Priv Mode Change (mscratchcsw)

CSR Address: 0x348

Reset Value: 0x0000_0000

Include Condition: CLIC = 1

Detailed:

Bit # R/W Description
31:0 RW MSCRATCHCSW: Machine scratch swap for privilege mode change

Scratch swap register for multiple privilege modes.

Note: Only the read-modify-write (swap/CSRRW) operation is useful for mscratchcsw. The behavior of the
non-CSRRW variants (i.e. CSRRS/C, CSRRWI, CSRRS/CI) and CSRRW variants with rd = x0 or rs1 = x0 on
mscratchcsw are implementation-defined. CV32E40S will treat such instructions as illegal instructions.

14.2.33 Machine Scratch Swap for Interrupt-Level Change (mscratchcswl)

CSR Address: 0x349

Reset Value: 0x0000_0000

Include Condition: CLIC = 1

Detailed:

Bit # R/W Description
31:0 RW MSCRATCHCSWL: Machine Scratch Swap for Interrupt-Level Change

68 Chapter 14. Control and Status Registers

CV32E40S User Manual

Scratch swap register for multiple interrupt levels.

Note: Only the read-modify-write (swap/CSRRW) operation is useful for mscratchcswl. The behavior of the
non-CSRRW variants (i.e. CSRRS/C, CSRRWI, CSRRS/CI) and CSRRW variants with rd = x0 or rs1 = x0 on
mscratchcswl are implementation-defined. CV32E40S will treat such instructions as illegal instructions.

14.2.34 Trigger Select Register (tselect)

CSR Address: 0x7A0

Reset Value: 0x0000_0000

Bit # R/W Description
31:0 WARL (0x0 -

(DBG_NUM_TRIGGERS-
1))

CV32E40S implements 0 to DBG_NUM_TRIGGERS triggers. Selects which trigger
CSRs are accessed through the tdata* CSRs.

14.2.35 Trigger Data 1 (tdata1)

CSR Address: 0x7A1

Reset Value: 0x2800_1000

Bit# R/W Description
31:28 WARL (0x2, 0x5,

0x6, 0xF*)
TYPE. 0x2 (mcontrol), 0x5 (etrigger), 0x6 (mcontrol6), 0xF (disabled).

27 WARL (0x1) DMODE. Only debug mode can write tdata registers.
26:0 WARL DATA. Trigger data depending on type

Note: Writing 0x0 to tdata1 disables the trigger and changes the value of tdata1 to 0xF800_0000, which is the only
supported value for a disabled trigger. The WARL behavior of tdata1.DATA depends on the value of tdata1.TYPE
as described in Match Control Type 2 (mcontrol), Match Control Type 6 (mcontrol6), Exception Trigger (etrigger) and
Trigger Data 1 (tdata1) - disabled view. tdata1 will also be set to 0xF800_0000 if tdata1 is attempted to be written
with type 0x5 (etrigger) while at the same time tdata2 contains a value that is illegal for exception triggers.

14.2.36 Match Control Type 2 (mcontrol)

CSR Address: 0x7A1 (mcontrol is accessible as tdata1 when tdata1.TYPE is 0x2)

Reset Value: Not applicable

14.2. CSR Descriptions 69

CV32E40S User Manual

Bit# R/W Description
31:28 WARL (0x2) TYPE. 2 = Address match trigger (legacy).
27 WARL (0x1) DMODE. Only debug mode can write tdata registers.
26:21 WARL (0x0) MASKMAX. Hardwired to 0.
20 WARL (0x0) HIT. Hardwired to 0.
19 WARL (0x0) SELECT. Only address matching is supported.
18 WARL (0x0) TIMING. Break before the instruction at the specified address.
17:16 WARL (0x0) SIZELO. Match accesses of any size.
15:12 WARL (0x1) ACTION. Enter debug mode on match.
11 WARL (0x0) CHAIN. Hardwired to 0.
10:7 WARL (0x0*, 0x2,

0x3)
MATCH. 0: Address matches tdata2, 2: Address is greater than or equal to
tdata2, 3: Address is less than tdata2.

6 WARL M. Match in machine mode.
5 WARL (0x0) Hardwired to 0.
4 WARL (0x0) S. Hardwired to 0.
3 WARL U. Match in user mode.
2 WARL EXECUTE. Enable matching on instruction address.
1 WARL STORE. Enable matching on store address.
0 WARL LOAD. Enable matching on load address.

14.2.37 Exception Trigger (etrigger)

CSR Address: 0x7A1 (etrigger is accessible as tdata1 when tdata1.TYPE is 0x5)

Reset Value: Not applicable

Bit# R/W Description
31:28 WARL (0x5) TYPE. 5 = Exception trigger.
27 WARL (0x1) DMODE. Only debug mode can write tdata registers.
26 WARL (0x0) HIT. Hardwired to 0.
25:13 WARL (0x0) Hardwired to 0.
12 WARL (0x0) VS. Hardwired to 0.
11 WARL (0x0) VU. Hardwired to 0.
10 WARL (0x0) Hardwired to 0.
9 WARL M. Match in machine mode.
8 WARL (0x0) Hardwired to 0.
7 WARL (0x0) S. Hardwired to 0.
6 WARL U. Match in user mode.
5:0 WARL (0x1) ACTION. Enter debug mode on match.

14.2.38 Match Control Type 6 (mcontrol6)

CSR Address: 0x7A1 (mcontrol6 is accessible as tdata1 when tdata1.TYPE is 0x6)

Reset Value: Not applicable

70 Chapter 14. Control and Status Registers

CV32E40S User Manual

Bit# R/W Description
31:28 WARL (0x6) TYPE. 6 = Address match trigger.
27 WARL (0x1) DMODE. Only debug mode can write tdata registers.
26 WARL (0x0) UNCERTAIN. Hardwired to 0.
25 HIT1. Forms 2-bit WARL (0x0, 0x1) bitfield with HIT0.
24 WARL (0x0) VS. Hardwired to 0.
23 WARL (0x0) VU. Hardwired to 0.
22 HIT0. Forms 2-bit WARL (0x0, 0x1) bitfield with HIT1.
21 WARL (0x0) SELECT. Only address matching is supported.
20:19 WARL (0x0) Hardwired to 0.
18:16 WARL (0x0) SIZE. Match accesses of any size.
15:12 WARL (0x1) ACTION. Enter debug mode on match.
11 WARL (0x0) CHAIN. Hardwired to 0.
10:7 WARL (0x0*, 0x2,

0x3)
MATCH. 0: Address matches tdata2, 2: Address is greater than or equal to
tdata2, 3: Address is less than tdata2.

6 WARL M. Match in machine mode.
5 WARL (0x0) UNCERTAINEN. Hardwired to 0.
4 WARL (0x0) S. Hardwired to 0.
3 WARL U. Match in user mode.
2 WARL EXECUTE. Enable matching on instruction address.
1 WARL STORE. Enable matching on store address.
0 WARL LOAD. Enable matching on load address.

Note: The hit1 (MSB) and hit0 (LSB) bitfields form a 2-bit bitfield together that has WARL (0x0, 0x1) behavior.

14.2.39 Trigger Data 1 (tdata1) - disabled view

CSR Address: 0x7A1 (tdata1 view when tdata1.TYPE is 0xF)

Reset Value: Not applicable

Bit# R/W Description
31:28 WARL (0xF) TYPE. 0xF (disabled).
27 WARL (0x1) DMODE. Only debug mode can write tdata registers.
26:0 WARL (0x0) DATA.

Note: Writing 0x0 to tdata1 disables the trigger and changes the value of tdata1 to 0xF800_0000, which is the
only supported value for a disabled trigger.

14.2. CSR Descriptions 71

CV32E40S User Manual

14.2.40 Trigger Data Register 2 (tdata2)

CSR Address: 0x7A2

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL DATA

Note: The WARL behavior of tdata2 depends on the values of tdata1.TYPE and tdata1.DMODE as described
in Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x2, Trigger Data Register 2 (tdata2) - View when
tdata1.TYPE is 0x5, Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x6 and Trigger Data Register 2
(tdata2) - View when tdata1.TYPE is 0xF.

14.2.41 Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x2

CSR Address: 0x7A2

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL DATA

Note: Accessible in Debug Mode or M-Mode, depending on tdata1.DMODE. This register stores the instruction
address, load address or store address to match against for a breakpoint trigger.

14.2.42 Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x5

CSR Address: 0x7A2

Reset Value: 0x0000_0000

Detailed:

72 Chapter 14. Control and Status Registers

CV32E40S User Manual

Bit# R/W Description
31:26 WARL (0x0) DATA[31:26]
25 WARL DATA[25]. Instruction parity/checksum fault.
24 WARL DATA[24]. Instruction bus fault.
23:12 WARL (0x0) DATA[23:12]
11 WARL DATA[11]. Environment call from M-Mode (ECALL)
10:9 WARL (0x0) DATA[10:9]
8 WARL DATA[8]. Environment call from U-Mode (ECALL)
7 WARL DATA[7]. Store/AMO access fault.
6 WARL (0x0) DATA[6]
5 WARL DATA[5]. Load access fault.
4 WARL (0x0) DATA[4]
3 WARL DATA[3]. Breakpoint.
2 WARL DATA[2]. Illegal instruction.
1 WARL DATA[1]. Instruction access fault.
0 WARL (0x0) DATA[0]

Note: Accessible in Debug Mode or M-Mode, depending on tdata1.DMODE. This register stores the currently selected
exception codes for an exception trigger.

14.2.43 Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x6

CSR Address: 0x7A2

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL DATA

Note: Accessible in Debug Mode or M-Mode, depending on tdata1.DMODE. This register stores the instruction
address, load address or store address to match against for a breakpoint trigger.

14.2.44 Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0xF

CSR Address: 0x7A2

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL DATA

Note: Accessible in Debug Mode or M-Mode, depending on tdata1.DMODE.

14.2. CSR Descriptions 73

CV32E40S User Manual

14.2.45 Trigger Info (tinfo)

CSR Address: 0x7A4

Reset Value: 0x0100_8064

Detailed:

Bit# R/W Description
31:24 R (0x1) VERSION. Sdtrig version 1.0.
23:16 WARL (0x0) Hardwired to 0.
15:0 R (0x8064) INFO. Types 0x2, 0x5, 0x6 and 0xF are supported.

The info field contains one bit for each possible type enumerated in tdata1. Bit N corresponds to type N. If the bit is
set, then that type is supported by the currently selected trigger. If the currently selected trigger does not exist, this field
contains 1.

Accessible in Debug Mode or M-Mode.

14.2.46 Debug Control and Status (dcsr)

CSR Address: 0x7B0

Reset Value: 0x4000_0413

Detailed:

Bit # R/W Description
31:28 R (0x4) XDEBUGVER. External debug support exists as described in

[RISC-V-DEBUG].
27:18 WARL (0x0) Reserved
17 WARL (0x0) EBREAKVS. Hardwired to 0
16 WARL (0x0) EBREAKVU. Hardwired to 0.
15 RW EBREAKM. Set to enter debug mode on ebreak during machine mode.
14 WARL (0x0) Hardwired to 0.
13 WARL (0x0) EBREAKS. Hardwired to 0.
12 WARL EBREAKU. Set to enter debug mode on ebreak during user mode.
11 WARL STEPIE. Set to enable interrupts during single stepping.
10 WARL STOPCOUNT.
9 WARL (0x0) STOPTIME. Hardwired to 0.
8:6 R CAUSE. Return the cause of debug entry.
5 WARL (0x0) V. Hardwired to 0.
4 WARL (0x1) MPRVEN. Hardwired to 1.
3 R NMIP. If set, an NMI is pending
2 RW STEP. Set to enable single stepping.
1:0 WARL (0x0, 0x3) PRV. Returns the privilege mode before debug entry.

74 Chapter 14. Control and Status Registers

CV32E40S User Manual

14.2.47 Debug PC (dpc)

CSR Address: 0x7B1

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:1 RW DPC[31:1]. Debug PC 31:1
0 WARL (0x0) DPC[0]. Hardwired to 0.

When the core enters in Debug Mode, DPC contains the virtual address of the next instruction to be executed.

14.2.48 Debug Scratch Register 0/1 (dscratch0/1)

CSR Address: 0x7B2/0x7B3

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 RW DSCRATCH0/1

14.2.49 Machine Cycle Counter (mcycle)

CSR Address: 0xB00

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW The lower 32 bits of the 64 bit machine mode cycle counter.

14.2.50 Machine Instructions-Retired Counter (minstret)

CSR Address: 0xB02

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW The lower 32 bits of the 64 bit machine mode instruction retired counter.

14.2. CSR Descriptions 75

CV32E40S User Manual

14.2.51 Machine Performance Monitoring Counter (mhpmcounter3 ..
mhpmcounter31)

CSR Address: 0xB03 - 0xB1F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

14.2.52 Upper 32 Machine Cycle Counter (mcycleh)

CSR Address: 0xB80

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW The upper 32 bits of the 64 bit machine mode cycle counter.

14.2.53 Upper 32 Machine Instructions-Retired Counter (minstreth)

CSR Address: 0xB82

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW The upper 32 bits of the 64 bit machine mode instruction retired counter.

14.2.54 Upper 32 Machine Performance Monitoring Counter (mhpmcounter3h ..
mhpmcounter31h)

CSR Address: 0xB83 - 0xB9F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

76 Chapter 14. Control and Status Registers

CV32E40S User Manual

14.2.55 CPU Control (cpuctrl)

CSR Address: 0xBF0

Reset Value: 0x0000_0019

Detailed:

Bit # R/W Description
31:20 R (0x0) Reserved. Hardwired to 0.
19:16 RW RNDDUMMYFREQ: Frequency control for dummy instruction insertion.

Dummy instruction inserted every n instructions where n is a range set based
on the value written to this register where: 0x0 = 1-4, 0x1 = 1-8, 0x3 = 1-16,
0x7 = 1-32, 0xF = 1-64.

15:5 R (0x0) Reserved. Hardwired to 0.
4 RW INTEGRITY: Enable checksum integrity checking (1 = enable).
3 RW PCHARDEN: Enable PC hardening (1 = enable).
2 RW RNDHINT: Replace c.slli with rd=x0, nzimm!=0 custom hint by a ran-

dom instruction without registerfile side effects (1 = enable).
1 RW RNDDUMMY: Dummy instruction insertion enable (1 = enable).
0 RW DATAINDTIMING: Data independent timing enable (1 = enable).

The cpuctrl register contains configuration registers for core security features.

14.2.56 Secure Seed 0

CSR Address: 0xBF9

Reset Value: LFSR0_CFG.default_seed

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Seed for LFSR0. Always reads as 0x0.

The secureseed0 CSR contains seed data for LFSR0.

Note: Only the read-modify-write (swap/CSRRW) operation is useful for secureseed0. The behavior of the non-
CSRRW variants (i.e. CSRRS/C, CSRRWI, CSRRS/CI) and CSRRW variants with rs1 = x0 on secureseed0 are
implementation-defined. CV32E40S will treat such instructions as illegal instructions.

14.2.57 Secure Seed 1

CSR Address: 0xBFA

Reset Value: LFSR1_CFG.default_seed

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Seed for LFSR1. Always reads as 0x0.

14.2. CSR Descriptions 77

CV32E40S User Manual

The secureseed1 CSR contains seed data for LFSR1.

Note: Only the read-modify-write (swap/CSRRW) operation is useful for secureseed1. The behavior of the non-
CSRRW variants (i.e. CSRRS/C, CSRRWI, CSRRS/CI) and CSRRW variants with rs1 = x0 on secureseed1 are
implementation-defined. CV32E40S will treat such instructions as illegal instructions.

14.2.58 Secure Seed 2

CSR Address: 0xBFC

Reset Value: LFSR2_CFG.default_seed

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Seed for LFSR2. Always reads as 0x0.

The secureseed2 CSR contains seed data for LFSR2.

Note: Only the read-modify-write (swap/CSRRW) operation is useful for secureseed2. The behavior of the non-
CSRRW variants (i.e. CSRRS/C, CSRRWI, CSRRS/CI) and CSRRW variants with rs1 = x0 on secureseed2 are
implementation-defined. CV32E40S will treat such instructions as illegal instructions.

14.2.59 Machine Vendor ID (mvendorid)

CSR Address: 0xF11

Reset Value: 0x0000_0602

Detailed:

Bit # R/W Description
31:7 R (0xC) Number of continuation codes in JEDEC manufacturer ID.
6:0 R (0x2) Final byte of JEDEC manufacturer ID, discarding the parity bit.

The mvendorid encodes the OpenHW JEDEC Manufacturer ID, which is 2 decimal (bank 13).

14.2.60 Machine Architecture ID (marchid)

CSR Address: 0xF12

Reset Value: 0x0000_0015

Detailed:

Bit # R/W Description
31:0 R (0x15) Machine Architecture ID of CV32E40S is 0x15 (decimal 21)

78 Chapter 14. Control and Status Registers

CV32E40S User Manual

14.2.61 Machine Implementation ID (mimpid)

CSR Address: 0xF13

Reset Value: Defined

Detailed:

Bit # R/W Description
31:20 R (0x0) Hardwired to 0.
19:16 R (0x0) MAJOR.
15:12 R (0x0) Hardwired to 0.
11:8 R (0x0) MINOR.
7:4 R (0x0) Hardwired to 0.
3:0 R PATCH. mimpid_patch_i, see Core Integration

The Machine Implementation ID uses a Major, Minor, Patch versioning scheme. The PATCH bitfield is defined and
set by the integrator and shall be set to 0 when no patches are applied. It is made available as mimpid_patch_i on the
boundary of CV32E40S such that it can easily be changed by a metal layer only change.

14.2.62 Hardware Thread ID (mhartid)

CSR Address: 0xF14

Reset Value: Defined

Bit # R/W Description
31:0 R Machine Hardware Thread ID mhartid_i, see Core Integration

14.2.63 Machine Configuration Pointer (mconfigptr)

CSR Address: 0xF15

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31:0 R (0x0) Reserved

14.2.64 Machine Interrupt Status (mintstatus)

CSR Address: 0xFB1

Reset Value: 0x0000_0000

Include Condition: CLIC = 1

Detailed:

14.2. CSR Descriptions 79

CV32E40S User Manual

Bit # R/W Description
31:24 R MIL: Machine Interrupt Level
23:16 R (0x0) Reserved. Hardwired to 0.
15: 8 R (0x0) SIL: Supervisor Interrupt Level, hardwired to 0.
7: 0 R (0x0) UIL: User Interrupt Level, hardwired to 0.

This register holds the active interrupt level for each privilege mode. Only Machine Interrupt Level is supported.

14.2.65 Machine Security Configuration (mseccfg)

CSR Address: 0x747

Reset Value: defined (based on PMP_MSECCFG_RV)

Detailed:

Bit# R/W Definition
31:10 WPRI (0x0) Hardwired to 0.
9 R (0x0) SSEED. Hardwired to 0.
8 R (0x0) USEED. Hardwired to 0.
7:3 WPRI (0x0) Hardwired to 0.
2 WARL RLB. Rule Locking Bypass.
1 WARL MMWP. Machine Mode Whitelist Policy. This is a sticky bit and once set can

only be unset due to rst_ni assertion.
0 WARL MML. Machine Mode Lockdown. This is a sticky bit and once set can only be

unset due to rst_ni assertion.

Note: mseccfg is hardwired to 0x0 if PMP_NUM_REGIONS == 0.

14.2.66 Machine Security Configuration (mseccfgh)

CSR Address: 0x757

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31:0 WPRI (0x0) Hardwired to 0.

80 Chapter 14. Control and Status Registers

CV32E40S User Manual

14.2.67 PMP Configuration (pmpcfg0-pmpcfg15)

CSR Address: 0x3A0 - 0x3AF

Reset Value: defined (based on PMP_PMPNCFG_RV[])

Detailed pmpcfg0:

Bit# Definition
31:24 PMP3CFG
23:16 PMP2CFG
15:8 PMP1CFG
7:0 PMP0CFG

Detailed pmpcfg1:

Bit# Definition
31:24 PMP7CFG
23:16 PMP6CFG
15:8 PMP5CFG
7:0 PMP4CFG

. . .

Detailed pmpcfg15:

Bit# Definition
31:24 PMP63CFG
23:16 PMP62CFG
15:8 PMP61CFG
7:0 PMP60CFG

The configuration fields for each pmpxcfg are as follows:

Bit# R/W Definition
7 WARL L. Lock
6:5 WARL (0x0) Reserved
4:3 WARL A. Mode
2 WARL / WARL

(0x0, 0x1, 0x3, 0x4,
0x5, 0x7)

X. Execute permission
1 W. Write permission
0 R. Read permission

Note: When PMP_GRANULARITY >= 1, the NA4 mode (pmpxcfg.A == 0x2) mode is not selectable. pmpxcfg.A
will remain unchanged when attempting to enable NA4 mode.

Note: pmpxcfg is WARL (0x0) if x >= PMP_NUM_REGIONS.

Note: If mseccfg.MML = 0, then the R, W and X together form a collective WARL field for which the combinations
with R = 0 and W = 1 are reserved for future use The value of the collective R, W, X bitfield will remain unchanged

14.2. CSR Descriptions 81

CV32E40S User Manual

when attempting to write R = 0 and W = 1 while mseccfg.MML = 0. If mseccfg.MML = 1, then the R, W and X
together form a collective WARL field in which all values are valid.

14.2.68 PMP Address (pmpaddr0 - pmpaddr63)

CSR Address: 0x3B0 - 0x3EF

Reset Value: defined (based on PMP_PMPADDR_RV[])

Bit# R/W Definition
31:0 WARL / WARL

(0x0)
ADDRESS[33:2]

Note: When PMP_GRANULARITY >= 1, pmpaddrx[PMP_GRANULARITY-1:0] will be read as 0 if the
PMP mode is TOR (pmpcfgx.A == 0x1) or OFF (pmpcfgx.A == 0x0). When PMP_GRANULARITY >= 2,
pmpaddrx[PMP_GRANULARITY-2:0] will be read as 1 if the PMP mode is NAPOT (pmpcfgx.A == 0x3). Although
changing pmpcfgx.A affects the value read from pmpaddrx, it does not affect the underlying value stored in that reg-
ister.

Note: pmpaddrx is WARL if x < PMP_NUM_REGIONS and WARL (0x0) otherwise.

14.3 Hardened CSRs

Some CSRs have been implemeted with error detection using an inverted shadow copy. If an attack is successful in
altering the register value, the error detection logic will trigger a major alert.

This applies to the following registers:

• cpuctrl

• dcsr

• jvt

• mepc

• mie

• mintstatus

• mintthresh

• mscratch

• mscratchcsw

• mscratchcswl

• mseccfg*

• mstatus

• mtvec

82 Chapter 14. Control and Status Registers

CV32E40S User Manual

• mtvt

• pmpaddr*

• pmpcfg*

14.3. Hardened CSRs 83

CV32E40S User Manual

84 Chapter 14. Control and Status Registers

CHAPTER

FIFTEEN

PERFORMANCE COUNTERS

CV32E40S implements performance counters according to [RISC-V-PRIV]. The performance counters are placed
inside the Control and Status Registers (CSRs) and can be accessed with the CSRRW(I) and CSRRS/C(I) instructions.

CV32E40S implements the clock cycle counter mcycle(h) and the retired instruction counter minstret(h). The
mcycle(h) and minstret(h) counters are always available and 64 bit wide. The event counters mhpmcounter3(h)
- mhpmcounter31(h) and the corresponding event selector CSRs mhpmevent3 - mhpmevent31 are hard-wired to 0.
The mcountinhibit CSR is used to individually enable/disable the counters.

Note: All performance counters are using the gated version of clk_i. The wfi instruction impact the gating of clk_i
as explained in Sleep Unit and can therefore affect the counters.

15.1 Controlling the counters from software

By default, all available counters are disabled after reset in order to provide the lowest power consumption.

They can be individually enabled/disabled by overwriting the corresponding bit in the mcountinhibit CSR at ad-
dress 0x320 as described in [RISC-V-PRIV]. In particular, to enable/disable mcycle(h), bit 0 must be written. For
minstret(h), it is bit 2.

The lower 32 bits of all counters can be accessed through the base register, whereas the upper 32 bits are accessed
through the h-register. Reads of all these registers are non-destructive.

15.2 Time Registers (time(h))

The user mode time(h) registers are not implemented. Any access to these registers will cause an illegal instruction
trap. It is recommended that a software trap handler is implemented to detect access of these CSRs and convert that
into access of the platform-defined mtime register (if implemented in the platform).

85

CV32E40S User Manual

86 Chapter 15. Performance Counters

CHAPTER

SIXTEEN

EXCEPTIONS AND INTERRUPTS

CV32E40S supports one of two interrupt architectures. If the CLIC parameter is set to 0, then the CLINT mode interrupt
architecture is supported (see CLINT Mode Interrupt Architecture). If the CLIC parameter is set to 1, then the CLIC
mode interrupt architecture is supported (see CLIC Mode Interrupt Architecture).

CLINT and CLIC offer different trade offs with respect to cost, interrupt latency and interrupt flexibility. If more
than 19 interrupts are required, if programmable interrupt levels are required or if hardware support for preemption is
important, then CLIC should be chosen.

16.1 Exceptions

CV32E40S can trigger the following exceptions as reported in mcause:

In-
ter-
rupt

Ex-
cep-
tion
Code

Description Scenario(s)

0 1 Instruction
access fault

Execution attempt from I/O region. Execution attempt with address failing PMP
check.

0 2 Illegal instruc-
tion

0 3 Breakpoint Environment break.
0 5 Load access

fault
Non-naturally aligned load access attempt to an I/O region. Load-Reserved at-
tempt to region without atomic support. Load attempt with address failing PMP
check.

0 7 Store/AMO ac-
cess fault

Non-naturally aligned store access attempt to an I/O region. Store-Conditional
or Atomic Memory Operation (AMO) attempt to region without atomic support.
Store attempt with address failing PMP check.

0 8 Environment
call from U-
Mode (ECALL)

0 11 Environment
call from M-
Mode (ECALL)

0 24 Instruction bus
fault

instr_err_i = 1 and instr_rvalid_i = 1 for instruction fetch

0 25 Instruction par-
ity/checksum
fault

instr_gntpar_i, instr_rvalidpar, instr_rchk_i related errors

87

CV32E40S User Manual

If an instruction raises multiple exceptions, the priority, from high to low, is as follows:

• instruction access fault (1)

• instruction parity/checksum fault (25)

• instruction bus fault (24)

• illegal instruction (2)

• environment call from U-Mode (8)

• environment call from M-Mode (11)

• environment break (3)

• store/AMO access fault (7)

• load access fault (5)

Exceptions in general cannot be disabled and are always active. All exceptions are precise. Whether the PMP and PMA
will actually cause exceptions depends on their configuration. CV32E40S raises an illegal instruction exception for any
instruction in the RISC-V privileged and unprivileged specifications that is explicitly defined as being illegal according
to the ISA implemented by the core, as well as for any instruction that is left undefined in these specifications unless
the instruction encoding is configured as a custom CV32E40S instruction for specific parameter settings as defined in
(see CORE-V Instruction Set Extensions). An instruction bus error leads to a precise instruction interface bus fault if an
attempt is made to execute the instruction that has an associated bus error. Similarly an instruction fetch with a failing
PMA or PMP check only leads to an instruction access exception if an actual execution attempt is made for it.

16.2 Non Maskable Interrupts

Non Maskable Interrupts (NMIs) update mepc, mcause and mstatus similar to regular interrupts. However, as the
faults that result in NMIs are imprecise, the contents of mepc is not guaranteed to point to the instruction after the
faulted load or store. The minsttatus CSR (which exists only if CLIC == 1) is not impacted by NMIs.

Note: (Unrecoverable) NMIs and regular interrupts have identical effects on the mstatusCSR. Specifically mstatus.
mie will get cleared to 0 when an (unrecoverable) NMI is taken. [RISC-V-PRIV] does not specify the behavior of
mstatus in response to NMIs, see https://github.com/riscv/riscv-isa-manual/issues/756. If this behavior is specified
at a future date, then we will reconsider our implementation.

NMIs have higher priority than other interrupts for both the CLINT mode interrupt architecture and the CLIC mode
interrupt architecture.

If CLIC == 0, then the NMI vector location is as follows:

• Upon an NMI in non-vectored CLINT mode the core jumps to mtvec[31:7], 5’h0, 2’b00} (i.e. index 0).

• Upon an NMI in vectored CLINT mode the core jumps to mtvec[31:7], 5’hF, 2’b00} (i.e. index 15).

If CLIC == 1, then the NMI vector location is as follows:

• Upon an NMI in CLIC mode the core jumps to mtvec[31:7], 5’h0, 2’b00} (i.e. index 0).

Note: For NMIs the exception codes in the mcause CSR do not match the table index as for regular interrupts.

An NMI will occur when a load or store instruction experiences a bus fault. The fault resulting in an NMI is handled
in an imprecise manner, meaning that the instruction that causes the fault is allowed to retire and the associated NMI
is taken afterwards. NMIs are never masked by the MIE bit. NMIs are masked however while in debug mode or while

88 Chapter 16. Exceptions and Interrupts

https://github.com/riscv/riscv-isa-manual/issues/756

CV32E40S User Manual

single stepping with STEPIE = 0 in the dcsr CSR. This means that many instructions may retire before the NMI is
visible to the core if debugging is taking place. Once the NMI is visible to the core, at most two instructions will retire
before the NMI is taken.

If an NMI becomes pending while in debug mode as described above, the NMI will be taken immediately after debug
mode has been exited.

In case of bufferable stores, the NMI is allowed to become visible an arbitrary time after the instruction retirement. As
for the case with debugging, this can cause several instructions to retire before the NMI becomes visible to the core.

When a data bus fault occurs, the first detected fault will be latched and used for mcause when the NMI is taken. Any
new data bus faults occuring while an NMI is pending will be discarded. When the NMI handler is entered, new data
bus faults may be latched.

While an NMI is pending, DCSR.nmip will be 1. Note that this CSR is only accessible from debug mode, and is thus
not visible for machine mode code.

16.3 CLINT Mode Interrupt Architecture

If CLIC == 0, then CV32E40S supports the CLINT mode interrupt architecture as defined in [RISC-V-PRIV]. In this
configuration only the CLINT mode interrupt handling modes (non-vectored CLINT mode and vectored CLINT mode)
can be used. The irq_i[31:16] interrupts are a custom extension that can be used with the CLINT mode interrupt
architecture.

When entering an interrupt/exception handler, the core sets the mepc CSR to the current program counter and saves
mstatus.MIE to mstatus.MPIE. All exceptions cause the core to jump to the base address of the vector table in
the mtvec CSR. Interrupts are handled in either non-vectored CLINT mode or vectored CLINT mode depending on
the value of mtvec.MODE. In non-vectored CLINT mode the core jumps to the base address of the vector table in
the mtvec CSR. In vectored CLINT mode the core jumps to the base address plus four times the interrupt ID. Upon
executing an mret instruction, the core jumps to the program counter previously saved in the mepc CSR and restores
mstatus.MPIE to mstatus.MIE.

The base address of the vector table must be aligned to 128 bytes and can be programmed by writing to the mtvec CSR
(see Machine Trap-Vector Base Address (mtvec) - CLIC == 0).

16.3.1 Interrupt Interface

Table 16.1 describes the interrupt interface used for the CLINT mode interrupt architecture.

Table 16.1: CLINT mode interrupt architecture interface signals
Signal Direc-

tion
Description

irq_i[31:16]input Active high, level sensistive interrupt inputs. Custom extension.
irq_i[15:12]input Reserved. Tie to 0.
irq_i[11]input Active high, level sensistive interrupt input. Referred to as Machine External Interrupt

(MEI), but integrator can assign a different purpose if desired.
irq_i[10:8]input Reserved. Tie to 0.
irq_i[7] input Active high, level sensistive interrupt input. Referred to as Machine Timer Interrupt (MTI),

but integrator can assign a different purpose if desired.
irq_i[6:4]input Reserved. Tie to 0.
irq_i[3] input Active high, level sensistive interrupt input. Referred to as Machine Software Interrupt

(MSI), but integrator can assign a different purpose if desired.
irq_i[2:0]input Reserved. Tie to 0.

16.3. CLINT Mode Interrupt Architecture 89

CV32E40S User Manual

Note: The clic_*_i pins are ignored in CLINT mode and should be tied to 0.

16.3.2 Interrupts

The irq_i[31:0] interrupts are controlled via the mstatus, mie and mip CSRs. CV32E40S uses the upper 16 bits
of mie and mip for custom interrupts (irq_i[31:16]), which reflects an intended custom extension in the RISC-
V CLINT mode interrupt architecture. After reset, all interrupts, except for NMIs, are disabled. To enable any of
the irq_i[31:0] interrupts, both the global interrupt enable (MIE) bit in the mstatus CSR and the corresponding
individual interrupt enable bit in the mieCSR need to be set. For more information, see the Control and Status Registers
documentation.

If multiple interrupts are pending, they are handled in the fixed priority order defined by [RISC-V-PRIV]. The highest
priority is given to the interrupt with the highest ID, except for the Machine Timer Interrupt, which has the lowest
priority. So from high to low priority the interrupts are ordered as follows:

• store parity/checksum fault NMI (1027)

• load parity/checksum fault NMI (1026)

• store bus fault NMI (1025)

• load bus fault NMI (1024)

• irq_i[31]

• irq_i[30]

• . . .

• irq_i[16]

• irq_i[11]

• irq_i[3]

• irq_i[7]

The irq_i[31:0] interrupt lines are level-sensitive. The NMIs are triggered by load/store bus fault events and
load/store parity/checksum fault events. To clear the irq_i[31:0] interrupts at the external source, CV32E40S re-
lies on a software-based mechanism in which the interrupt handler signals completion of the handling routine to the
interrupt source, e.g., through a memory-mapped register, which then deasserts the corresponding interrupt line.

In Debug Mode, all interrupts are ignored independent of mstatus.MIE and the content of the mie CSR.

CV32E40S can trigger the following interrupts as reported in mcause:

90 Chapter 16. Exceptions and Interrupts

CV32E40S User Manual

Inter-
rupt

Excep-
tion
Code

Description Scenario(s)

1 3 Machine Software Interrupt (MSI) irq_i[3]
1 7 Machine Timer Interrupt (MTI) irq_i[7]
1 11 Machine External Interrupt (MEI) irq_i[11]
1 31-16 Machine Fast Interrupts irq_i[31]-irq_i[16]
1 1024 Load bus fault NMI (imprecise) data_err_i = 1 and data_rvalid_i = 1

for load
1 1025 Store bus fault NMI (imprecise) data_err_i = 1 and data_rvalid_i = 1

for store
1 1026 Load parity/checksum fault NMI (impre-

cise)
Load parity/checksum fault (imprecise)

1 1027 Store parity/checksum fault NMI (impre-
cise)

Store parity/checksum fault (imprecise)

Note: Load bus fault, store bus fault, load parity/checksum fault and store parity/checksum fault are handled as
imprecise non-maskable interrupts (as opposed to precise exceptions).

Note: The NMI vector location is at index 15 of the machine trap vector table for vectored CLINT mode (i.e. at
{mtvec[31:7], 5’hF, 2’b00}). The NMI vector location therefore does not match its exception code as is otherwise the
case for vectored CLINT mode.

16.3.3 Nested Interrupt Handling

Within the CLINT mode interrupt architecture there is no hardware support for nested interrupt handling. Nested
interrupt handling can however still be supported via software.

The hardware automatically disables interrupts upon entering an interrupt/exception handler. Otherwise, interrupts
during the critical part of the handler, i.e. before software has saved the mepc and mstatus CSRs, would cause those
CSRs to be overwritten. If desired, software can explicitly enable interrupts by setting mstatus.MIE to 1 from within
the handler. However, software should only do this after saving mepc and mstatus. There is no limit on the maximum
number of nested interrupts. Note that, after enabling interrupts by setting mstatus.MIE to 1, the current handler will
be interrupted also by lower priority interrupts. To allow higher priority interrupts only, the handler must configure
mie accordingly.

16.4 CLIC Mode Interrupt Architecture

If CLIC == 1, then CV32E40S supports the Smclic, Smclicshv and Smclicconfig extensions defined in [RISC-V-CLIC].
The Ssclic and Suclic extensions are not supported. In this configuration (i.e. CLIC == 1) only the CLIC interrupt
handling mode can be used (i.e. mtvec[1:0] = 0x3).

The CLIC implementation is however split into a part internal to the core (containing CSRs and related logic) and a part
external to the core (containing memory mapped registers and arbitration logic). CV32E40S only provides the core
internal part of CLIC. The external part can be added on the interface described in Interrupt Interface. CLIC provides
low-latency, vectored, pre-emptive interrupts.

16.4. CLIC Mode Interrupt Architecture 91

CV32E40S User Manual

16.4.1 Interrupt Interface

Table 16.2 describes the interrupt interface used for the CLIC interrupt architecture.

Table 16.2: CLIC mode interrupt architecture interface signals
Signal Direc-

tion
Description

clic_irq_i input Is there any pending-and-enabled interrupt?
clic_irq_id_i[CLIC_ID_WIDTH-1:0]input Index of the most urgent pending-and-enabled interrupt.
clic_irq_level_i[7:0]input Interrupt level of the most urgent pending-and-enabled interrupt.
clic_irq_priv_i[1:0]input Associated privilege mode of the most urgent pending-and-enabled interrupt.

Only machine-mode interrupts are supported.
clic_irq_shv_i input Selective hardware vectoring enabled for the most urgent pending-and-enabled

interrupt?

The term pending-and-enabled interrupt in above table refers to pending-and-locally-enabled, i.e. based on the
CLICINTIP and CLICINTIE memory mapped registers from [RISC-V-CLIC].

Note: Edge triggered interrupts are not supported.

Note: clic_irq_shv_i shall be 0 if cliccfg.nvbits of the externl CLIC module is 0.

Note: clic_irq_priv_i[1:0] shall be tied to 2’b11 (machine).

Note: The irq_i[31:0] pins are ignored in CLIC mode and should be tied to 0.

16.4.2 Interrupts

Although the [RISC-V-CLIC] specification supports up to 4096 interrupts, CV32E40S itself supports at most 1024
interrupts. The maximum number of supported CLIC interrupts is equal to 2^CLIC_ID_WIDTH, which can range
from 2 to 1024. The CLIC_ID_WIDTH parameter also impacts the alignment requirement for the trap vector table, see
Machine Trap Vector Table Base Address (mtvt).

Interrupt prioritization is mostly performed in the part of CLIC that is external to the core, with the exception that
CV32E40S prioritizes all NMIs above interrupts received via clic_irq_i.

16.4.3 Nested Interrupt Handling

CV32E40S offers hardware support for nested interrupt handling when CLIC == 1.

CLIC extends interrupt preemption to support up to 256 interrupt levels for each privilege mode, where higher-
numbered interrupt levels can preempt lower-numbered interrupt levels. See [RISC-V-CLIC] for details.

92 Chapter 16. Exceptions and Interrupts

CHAPTER

SEVENTEEN

DEBUG & TRIGGER

CV32E40S offers support for execution-based debug according to [RISC-V-DEBUG] (only) if DEBUG = 1.

Note: As execution based debug is used, the Debug Module region, as defined by the DM_REGION_START and
DM_REGION_END parameters, needs to support code execution, loads and stores when CV32E40S is in debug mode.
In order to achieve this CV32E40S overrules the PMA and PMP settings for the Debug Module region when it is in
debug mode (see Physical Memory Attribution (PMA) and Physical Memory Protection (PMP)).

The following list shows the simplified overview of events that occur in the core when debug is requested:

1. Enters Debug Mode

2. Saves the PC to dpc

3. Updates the cause in dcsr

4. Points the PC to the location determined by the input port dm_haltaddr_i

5. Begins executing debug control code

Debug Mode can be entered by one of the following conditions:

• External debug event using the debug_req_i signal

• Trigger Module match event with tdata1.action set to 1

• ebreak instruction when not in Debug Mode and when dcsr.EBREAKM == 1 (see EBREAK Behavior below)

• ebreak instruction in user mode when dcsr.EBREAKU == 1 (see EBREAK Behavior below)

A user wishing to perform an abstract access, whereby the user can observe or control a core’s GPR or CSR register
from the hart, is done by invoking debug control code to move values to and from internal registers to an externally
addressable Debug Module (DM). Using this execution-based debug allows for the reduction of the overall number of
debug interface signals.

Note: Debug support in CV32E40S is only one of the components needed to build a System on Chip design with
run-control debug support (think “the ability to attach GDB to a core over JTAG”). Additionally, a Debug Module and
a Debug Transport Module, compliant with [RISC-V-DEBUG], are needed.

A supported open source implementation of these building blocks can be found in the RISC-V Debug Support for
PULP Cores IP block.

The CV32E40S also supports a Trigger Module to enable entry into Debug Mode on a trigger event with the following
features:

• Number of trigger register(s): Parametrizable number of triggers using parameter DBG_NUM_TRIGGERS.

93

https://github.com/pulp-platform/riscv-dbg/
https://github.com/pulp-platform/riscv-dbg/

CV32E40S User Manual

• Supported trigger types: Execute/load/store address match (Match Control) and exception trigger.

The compare value used to determine an execute address match is the PC of the instruction, i.e. only the lowest virtual
address of the instruction is used. The compare value(s) used to determine a load/store address match depend(s) on the
size of the transferred data item as well as the lowest virtual address of the access. A byte load/store for address A only
uses A as compare value; a halfword load/store for address A uses A and A+1 as compare values; a word load/store for
address A uses A, A+1, A+2 and A+3 as compare values.

A trigger match will cause debug entry if tdata1.ACTION is 1.

Note: Hardware triggers and breakpoints are not supported for the table fetch used in table jump instructions and
CLIC hardware vectored interrupts.

The CV32E40S will not support the optional debug features 10, 11, & 12 listed in Section 4.1 of [RISC-V-DEBUG].
Specifically, a control transfer instruction’s destination location being in or out of the Program Buffer and instructions
depending on PC value shall not cause an illegal instruction.

CV32E40S prioritizes debug mode entry below NMIs, but above regular interrupts and synchronous exceptions.

17.1 Interface

Signal Direc-
tion

Description

debug_req_i input Request to enter Debug Mode
debug_havereset_o output Debug status: Core has been reset
debug_running_o output Debug status: Core is running
debug_halted_o output Debug status: Core is halted
debug_pc_valid_o output Valid signal for debug_pc_o
debug_pc_o output PC of last retired instruction
dm_halt_addr_i[31:0]input Address for debugger entry
dm_exception_addr_i[31:0]input Address for debugger exception entry

debug_req_i is the “debug interrupt”, issued by the debug module when the core should enter Debug Mode. The
debug_req_i signal is synchronous to clk_i and it is level sensitive. It is not guaranteed that a short pulse on
debug_req_i will cause CV32E40S to enter debug mode.

debug_havereset_o, debug_running_o, and debug_mode_o signals provide the operational status of the core to
the debug module. The assertion of these signals is mutually exclusive.

debug_havereset_o is used to signal that the CV32E40S has been reset. debug_havereset_o is set high during
the assertion of rst_ni. It will be cleared low a few (unspecified) cycles after rst_ni has been deasserted and
fetch_enable_i has been sampled high.

debug_running_o is used to signal that the CV32E40S is running normally.

debug_halted_o is used to signal that the CV32E40S is in debug mode.

debug_pc_o is the PC of the last retired instruction. This signal is only valid when debug_pc_valid_o = 1.

dm_halt_addr_i is the address where the PC jumps to for a debug entry event. When in Debug Mode, an ebreak
instruction will also cause the PC to jump back to this address without affecting status registers. (see EBREAK Behavior
below).

94 Chapter 17. Debug & Trigger

CV32E40S User Manual

dm_exception_addr_i is the address where the PC jumps to when an exception occurs during Debug Mode. When
in Debug Mode, the mret and ecall instructions will also cause the PC to jump back to this address without affecting
status registers.

Both dm_halt_addr_i and dm_exception_addr_i must be word aligned and they must both be within the Debug
Module region as defined by the DM_REGION_START and DM_REGION_END parameters.

17.2 Core Debug Registers

If DEBUG = 1, CV32E40S implements four core debug registers, namely Debug Control and Status (dcsr), Debug PC
(dpc), and two debug scratch registers. Access to these registers in non Debug Mode results in an illegal instruction.

The trigger related CSRs (tselect, tdata1, tdata2, tdata3, tinfo, tcontrol) are only included if
DBG_NUM_TRIGGERS is set to a value greater than 0. Further descriptions of these CSRs can be found in Trigger Select
Register (tselect), Trigger Data 1 (tdata1), Trigger Data Register 2 (tdata2), csr-tdata3, Trigger Info (tinfo), csr-tcontrol
and [RISC-V-DEBUG]. The optional mcontext and mscontext CSRs are not implemented.

If DBG_NUM_TRIGGERS is 0, access to the trigger registers will result in an illegal instruction exception.

The tdata1.DMODE bitfield controls write access permission to the currently selected triggers tdata* registers. In
CV32E40S this bit is tied to 1, and thus only debug mode is able to write to the trigger registers.

17.3 Debug state

As specified in RISC-V Debug Specification ([RISC-V-DEBUG]) every hart that can be selected by the Debug Module
is in exactly one of four states: nonexistent, unavailable, running or halted.

The remainder of this section assumes that the CV32E40S will not be classified as nonexistent by the integrator.

The CV32E40S signals to the Debug Module whether it is running or halted via its debug_running_o and
debug_halted_o pins respectively. Therefore, assuming that this core will not be integrated as a nonexistent
core, the CV32E40S is classified as unavailable when neither debug_running_o or debug_halted_o is asserted.
Upon rst_ni assertion the debug state will be unavailable until some cycle(s) after rst_ni has been deasserted and
fetch_enable_i has been sampled high. After this point (until a next reset assertion) the core will transition between
having its debug_halted_o or debug_running_o pin asserted depending whether the core is in debug mode or not.
Exactly one of the debug_havereset_o, debug_running_o, debug_halted_o is asserted at all times.

The key properties of the debug states are:

• The CV32E40S can remain in its unavailable state for an arbitrarily long time (depending on
rst_ni and fetch_enable_i).

• If debug_req_i is asserted after rst_ni deassertion and before or coincident with the assertion of
fetch_enable_i, then the CV32E40S is guaranteed to transition straight from its unavailable
state into its halted state. If debug_req_i is asserted at a later point in time, then the CV32E40S
might transition through the running state on its ways to the halted state.

• If debug_req_i is asserted during the running state, the core will eventually transition into the
halted state (typically after a couple of cycles).

Note: Due to debug_req_i being level sensitive, it is not guaranteed that a short pulse on debug_req_i
will cause CV32E40S to enter its halted state in any of the bullets above. To achieve (eventual) transition
into the halted state, debug_req_i must be kept asserted until debug_halted_o has been asserted.

17.2. Core Debug Registers 95

CV32E40S User Manual

17.4 EBREAK Behavior

The ebreak instruction description is distributed across several RISC-V specifications: [RISC-V-DEBUG],
[RISC-V-PRIV], [RISC-V-UNPRIV]. The following is a summary of the behavior for three common scenarios.

17.4.1 Scenario 1 : Enter Exception

Executing the ebreak instruction in machine mode when the core is not in Debug Mode and dcsr.EBREAKM == 0
shall result in the following actions:

• The core enters the exception handler routine located at mtvec (Debug Mode is not entered)

• mepc and mcause are updated

Execution of an ebreak instruction in user mode when the core is not in Debug Mode and dcsr.EBREAKU == 0 triggers
exception entry in a similar manner.

To properly return from the exception, the ebreak handler will need to increment the mepc to the next instruction. This
requires querying the size of the ebreak instruction that was used to enter the exception (16 bit c.ebreak or 32 bit
ebreak).

Note: CV32E40S does not support mtval CSR register which would have saved the value of the instruction for
exceptions.

17.4.2 Scenario 2 : Enter Debug Mode

Executing the ebreak instruction in machine mode when the core is not in Debug Mode and dcsr.EBREAKM == 1
shall result in the following actions:

• The core enters Debug Mode and starts executing debug code located at dm_halt_addr_i (exception routine
not called)

• dpc and dcsr are updated

Execution of an ebreak instruction in user mode when the core is not in Debug Mode and dcsr.EBREAKU == 1 triggers
debug mode entry in a similar manner.

Similar to the exception scenario above, the debugger will need to increment the dpc to the next instruction before
returning from Debug Mode.

Note: The default value of dcsr.EBREAKM is 0 and the dcsr is only accessible in Debug Mode. To enter Debug
Mode from ebreak, the user will first need to enter Debug Mode through some other means, such as from the external
debug_req_i, and set dcsr.EBREAKM.

96 Chapter 17. Debug & Trigger

CV32E40S User Manual

17.4.3 Scenario 3 : Exit Program Buffer & Restart Debug Code

Executing the ebreak instruction when the core is in Debug Mode shall result in the following actions:

• The core remains in Debug Mode and execution jumps back to the beginning of the debug code located at
dm_halt_addr_i

• None of the CSRs are modified

17.4. EBREAK Behavior 97

CV32E40S User Manual

98 Chapter 17. Debug & Trigger

CHAPTER

EIGHTEEN

RISC-V FORMAL INTERFACE

Note: A bindable RISC-V Formal Interface (RVFI) interface will be provided for CV32E40S. See
[SYMBIOTIC-RVFI] for details on RVFI.

The module cv32e40s_rvfi can be used to create a log of the executed instructions. It is a behavioral, non-
synthesizable, module that can be bound to the cv32e40s_core.

RVFI serves the following purposes:

• It can be used for formal verification.

• It can be used to produce an instruction trace during simulation.

• It can be used as a monitor to ease interfacing with an external scoreboard that itself can be interfaced to an
Instruction Set Simulator (ISS) for verification reasons.

18.1 New Additions

Debug Signals

output [NRET * 3 - 1 : 0] rvfi_dbg
output [NRET - 1 : 0] rvfi_dbg_mode

Debug entry is seen by RVFI as happening between instructions. This means that neither the last instruction before
debug entry nor the first instruction of the debug handler will signal any direct side-effects. The first instruction of
the handler will however show the resulting state caused by these side-effects (e.g. the CSR rmask/rdata signals will
show the updated values, pc_rdata will be at the debug handler address, etc.).

For the first instruction after entering debug, the rvfi_dbg signal contains the debug cause (see table below). The
signal is otherwise 0. The rvfi_dbg_mode signal is high if the instruction was executed in debug mode and low
otherwise.

Table 18.1: Debug Causes
Cause Value
None 0x0
Ebreak 0x1
Trigger Match 0x2
External Request 0x3
Single Step 0x4

99

CV32E40S User Manual

Note: rvfi_dbg will not always match dcsr.CAUSE because an ebreak in debug mode will be reported via
rvfi_dbg, whereas dcsr.CAUSE will remain unchanged for that case.

NMI signals

output [1:0] rvfi_nmip

Whenever CV32E40S has a pending NMI, the rvfi_nmip will signal this. rvfi_nmip[0] will be 1 whenever an NMI
is pending, while rvfi_nmip[1] will be 0 for loads and 1 for stores.

18.2 Compatibility

This chapter specifies interpretations and compatibilities to the [SYMBIOTIC-RVFI].

Interface Qualification

All RVFI output signals are qualified with the rvfi_valid signal. Any RVFI operation (retired or trapped instruction
or trapped CLIC pointer) will set rvfi_valid high and increment the rvfi_order field. When rvfi_valid is low,
all other RVFI outputs can be driven to arbitrary values.

Trap Signal

The trap signal indicates that a synchronous trap has ocurred and side-effects can be expected.

output rvfi_trap_t[NRET - 1 : 0] rvfi_trap

Where the rvfi_trap_t struct contains the following fields:

Table 18.2: RVFI trap type
Field Type Bits
trap logic [0]
exception logic [1]
debug logic [2]
exception_cause logic [5:0] [8:3]
debug_cause logic [2:0] [11:9]
cause_type logic [1:0] [13:12]
clicptr logic [14]

rvfi_trap consists of 15 bits. rvfi_trap.trap is asserted if an instruction or CLIC pointer causes an exception or
debug entry. rvfi_trap.exception is set for synchronous traps that do not cause debug entry. rvfi_trap.debug
is set for synchronous traps that do cause debug mode entry. rvfi_trap.exception_cause provide information
about non-debug traps, while rvfi_trap.debug_cause provide information about traps causing entry to debug mode.
rvfi_trap.cause_type differentiates between fault causes that map to the same exception code in rvfi_trap.
exception_cause and rvfi_trap.debug_cause. rvfi_trap.clicptr is set for CLIC pointers. CLIC pointers
are only reported on RVFI when they get an exception during fetch. When an exception is caused by a single stepped
instruction, both rvfi_trap.exception and rvfi_trap.debug will be set. When rvfi_trap signals a trap, CSR
side effects and a jump to a trap/debug handler in the next cycle can be expected. The different trap scenarios, their
expected side-effects and trap signalling are listed in the table below:

Interrupts

Interrupts are seen by RVFI as happening between instructions. This means that neither the last instruction before the
interrupt nor the first instruction of the interrupt handler will signal any direct side-effects. The first instruction of the

100 Chapter 18. RISC-V Formal Interface

CV32E40S User Manual

handler will however show the resulting state caused by these side-effects (e.g. the CSR rmask/rdata signals will show
the updated values, pc_rdata will be at the interrupt handler address etc.).

output rvfi_intr_t[NRET - 1 : 0] rvfi_intr

Where the rvfi_intr_t struct contains the following fields:

Table 18.3: RVFI intr type
Field Type Bits
intr logic [0]
exception logic [1]
interrupt logic [2]
cause logic [10:0] [13:3]

rvfi_intr consists of 14 bits. rvfi_intr.intr is set for the first instruction of the trap handler when encountering
an exception or interrupt. rvfi_intr.exception indicates it was caused by synchronous trap and rvfi_intr.
interrupt indicates it was caused by an interrupt. rvfi_intr.cause signals the cause for entering the trap handler.

Table 18.4: Table of scenarios for first instruction of excep-
tion/interrupt/debug handler

Scenario rvfi_intr rvfi_dbg[2:0]mcause[31]dcsr[8:6]
(cause)intr ex-

cep-
tion

in-
ter-
rupt

cause

Synchronous trap 1 1 0 Sync
trap
cause

0x0 0 •

Interrupt (includes NMIs from bus errors) 1 0 1 Inter-
rupt
cause

0x0 1 •

Debug entry due to EBREAK (from non-debug mode) 0 0 0 0x0 0x1 • 0x1

Debug entry due to EBREAK (from debug mode) 0 0 0 0x0 0x1 • •

Debug entry due to trigger match 0 0 0 0x0 0x2 • 0x2

Debug entry due to external debug request X X X X 0x3
or
0x5

X 0x3
or
0x5

Debug handler entry due to single step X X X X 0x4 X 0x4

Note: In above table the - symbol indicates an unchanged value. The X symbol indicates that multiple values are
possible.

Note: rvfi_intr is not set for debug traps unless a debug entry happens during the first instruction of a trap handler

18.2. Compatibility 101

CV32E40S User Manual

(see rvfi_intr == X in the table above). In this case CSR side-effects (to mepc and mcause) can be expected as well.

Program Counter

The pc_wdata signal shows the predicted next program counter. This prediction ignores asynchronous traps (asyn-
chronous debug requests and interrupts) and single step debug requests that may have happened at the same time as the
instruction.

Memory Access

For CV32E40S, the rvfi_mem interface has been expanded to support multiple memory operations per instruction.
The new format of the rvfi_mem signals can be seen in the code block below.

output [NRET * NMEM * XLEN - 1 : 0] rvfi_mem_addr
output [NRET * NMEM * XLEN/8 - 1 : 0] rvfi_mem_rmask
output [NRET * NMEM * XLEN/8 - 1 : 0] rvfi_mem_wmask
output [NRET * NMEM * XLEN - 1 : 0] rvfi_mem_rdata
output [NRET * NMEM * XLEN - 1 : 0] rvfi_mem_wdata
output [NRET * NMEM * 3 - 1 : 0] rvfi_mem_prot

Instructions will populate the rvfi_mem outputs with incrementing NMEM, starting at NMEM=1.

Instructions with a single memory operation (e.g. all RV32I instructions), including split misaligned transfers, will
only use NMEM = 1. Instructions with multiple memory operations (e.g. the push and pop instructions from Zcmp)
use NMEM > 1 in case multiple memory operations actually occur. rvfi_mem_prot indicates the value of OBI prot
used for the memory access or accesses. Note that this will be undefined upon access faults.

For cores as CV32E40S that support misaligned access rvfi_mem_addr will not always be 4 byte aligned. For mis-
aligned accesses the start address of the transfer is reported (i.e. the start address of the first sub-transfer).

CSR Signals

To reduce the number of signals in the RVFI interface, a vectorized CSR interface has been introduced for register
ranges.

output [<NUM_CSRNAME>-1:0] [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_rmask
output [<NUM_CSRNAME>-1:0] [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_wmask
output [<NUM_CSRNAME>-1:0] [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_rdata
output [<NUM_CSRNAME>-1:0] [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_wdata

Example:

output [31:0] [31:0] rvfi_csr_name_rmask
output [31:0] [31:0] rvfi_csr_name_wmask
output [31:0] [31:0] rvfi_csr_name_rdata
output [31:0] [31:0] rvfi_csr_name_wdata

Instead of:

output [31:0] rvfi_csr_name0_rmask
output [31:0] rvfi_csr_name0_wmask
output [31:0] rvfi_csr_name0_rdata
output [31:0] rvfi_csr_name0_wdata
. . .
output [31:0] rvfi_csr_name31_rmask
output [31:0] rvfi_csr_name31_wmask

(continues on next page)

102 Chapter 18. RISC-V Formal Interface

CV32E40S User Manual

(continued from previous page)

output [31:0] rvfi_csr_name31_rdata
output [31:0] rvfi_csr_name31_wdata

CSR mnxti

CSR accesses to the mnxti CSR do a read-modify-write on the mstatus CSR, and return a pointer address if there is
a pending non-SHV CLIC interrupt. If there is a pending non-SHV CLIC interrupt, it also updates mintstatus and
mcause. To reflect this behavior, the rvfi_csr_mnxti* outputs for mnxti have a different semantic than other CSRs.

The rvfi_csr_mnxti* is reported as follows on RVFI:

• The rmask will always be all ones as for other CSRs.

• The wmask will be all ones whenever the CSR instruction actually writes to mstatus.

• The wdata will be the data written to mstatus.

• The rdata will report a pointer address if an interrupt is pending, or 0 if no interrupt is pending.

Note that the rvfi_csr_mstatus* will also reflect the access to mstatus due to an mnxti access. In case the access
to mnxti returns a valid pointer address, the rvfi_csr_mintstatus* and rvfi_csr_mcause* will also have values
showing the side effects of accessing mnxti.

GPR signals

For CV32E40S, RVFI has been expanded to allow reporting multiple register file operations per instruction (more than
two reads and one write). The interface is defined as follows:

output [NRET * 32 * XLEN - 1 : 0] rvfi_gpr_rdata
output [NRET * 32 -1 : 0] rvfi_gpr_rmask
output [NRET * 32 * XLEN - 1 : 0] rvfi_gpr_wdata
output [NRET * 32 -1 : 0] rvfi_gpr_wmask

The outputs rvfi_gpr_rdata and rvfi_gpr_wdata reflect the entire register file, with each XLEN field of the vector
representing one GPR, with [x0] starting at index [XLEN - 1 : 0], [x1] at index [2*XLEN-1 -: XLEN] and so on.
Each bit in the outputs rvfi_gpr_rmask and rvfi_gpr_wmask indicates if a GPR has been read or written during
an instruction. The index of the bit indicates the address of the GPR accessed. Entries in rvfi_gpr_rdata and
rvfi_gpr_wdata are only considered valid if the corresponding bit in the rvfi_gpr_rmask or rvfi_gpr_wmask is
set.

Machine Counter/Timers

In contrast to [SYMBIOTIC-RVFI], the mcycle[h] and minstret[h] registers are not modelled as happening “between
instructions” but rather as a side-effect of the instruction. This means that an instruction that causes an increment
(or decrement) of these counters will set the rvfi_csr_mcycle_wmask, and that rvfi_csr_mcycle_rdata is not
necessarily equal to rvfi_csr_mcycle_wdata.

Halt Signal

The rvfi_halt signal is meant for liveness properties of cores that can halt execution. It is only needed for cores that
can lock up. Tied to 0 for RISC-V compliant cores.

Mode Signal

The rvfi_mode signal shows the current privilege mode as opposed to the effective privilege mode of the instruction.
I.e. for load and store instructions the reported privilege level will therefore not depend on mstatus.mpp and mstatus.
mprv.

OBI prot Signal

18.2. Compatibility 103

CV32E40S User Manual

rvfi_instr_prot indicates the value of OBI prot used for fetching the retired instruction. Note that this will be
undefined upon access faults.

18.3 Trace output file

Tracing can be enabled during simulation by defining CV32E40S_TRACE_EXECUTION. All traced instructions
are written to a log file. The log file is named trace_rvfi.log.

18.4 Trace output format

The trace output is in tab-separated columns.

1. PC: The program counter

2. Instr: The executed instruction (base 16). 32 bit wide instructions (8 hex digits) are uncompressed instructions,
16 bit wide instructions (4 hex digits) are compressed instructions.

3. rs1_addr Register read port 1 source address, 0x0 if not used by instruction

4. rs1_data Register read port 1 read data, 0x0 if not used by instruction

5. rs2_addr Register read port 2 source address, 0x0 if not used by instruction

6. rs2_data Register read port 2 read data, 0x0 if not used by instruction

7. rd_addr Register write port 1 destination address, 0x0 if not used by instruction

8. rd_data Register write port 1 write data, 0x0 if not used by instruction

9. mem_addr Memory address for instructions accessing memory

10. rvfi_mem_rmask Bitmask specifying which bytes in rvfi_mem_rdata contain valid read data

11. rvfi_mem_wmask Bitmask specifying which bytes in rvfi_mem_wdata contain valid write data

12. rvfi_mem_rdata The data read from memory address specified in mem_addr

13. rvfi_mem_wdata The data written to memory address specified in mem_addr

PC Instr rs1_addr rs1_rdata rs2_addr rs2_rdata rd_addr rd_wdata mem_
→˓addr mem_rmask mem_wmask mem_rdata mem_wdata
00001f9c 14c70793 0e 000096c8 0c 00000000 0f 00009814 ␣
→˓00009814 0 0 00000000 00000000
00001fa0 14f72423 0e 000096c8 0f 00009814 00 00000000 ␣
→˓00009810 0 f 00000000 00009814
00001fa4 0000bf6d 1f 00000000 1b 00000000 00 00000000 ␣
→˓00001fa6 0 0 00000000 00000000
00001f5e 000043d8 0f 00009814 04 00000000 0e 00000000 ␣
→˓00009818 f 0 00000000 00000000
00001f60 0000487d 00 00000000 1f 00000000 10 0000001f ␣
→˓0000001f 0 0 00000000 00000000

104 Chapter 18. RISC-V Formal Interface

CHAPTER

NINETEEN

CORE-V INSTRUCTION SET EXTENSIONS

19.1 Custom instructions

CV32E40S supports the custom instruction(s) listed in Table 19.1.

Table 19.1: Custom instructions
Custom
instruc-
tion

Encod-
ing

Description

wfe 0x8C00_0073Wait For Event, see WFE.

19.2 Custom CSRs

CV32E40S supports the custom CSRs listed in Table 14.2.

105

CV32E40S User Manual

106 Chapter 19. CORE-V Instruction Set Extensions

CHAPTER

TWENTY

CORE VERSIONS AND RTL FREEZE RULES

The CV32E40S is defined by the marchid and mimpid tuple. The tuple identify which sets of parameters have been
verified by OpenHW Group, and once RTL Freeze is achieved, no further non-logically equivalent changes are allowed
on that set of parameters.

The RTL Freeze version of the core is indentified by a GitHub tag with the format cv32e40s_vMAJOR.MINOR.PATCH
(e.g. cv32e40s_v1.0.0). In addition, the release date is reported in the documentation.

20.1 What happens after RTL Freeze?

20.1.1 A bug is found

If a bug is found that affect the already frozen parameter set, the RTL changes required to fix such bug are non-logically
equivalent by definition. Therefore, the RTL changes are applied only on a different mimpid value and the bug and the
fix must be documented. These changes are visible by software as the mimpid has a different value. Every bug or set
of bugs found must be followed by another RTL Freeze release and a new GitHub tag.

20.1.2 RTL changes on non-verified yet parameters

If changes affecting the core on a non-frozen parameter set are required, then such changes must remain logically
equivalent for the already frozen set of parameters (except for the required mimpid update), and they must be applied
on a different mimpid value. They can be non-logically equivalent to a non-frozen set of parameters. These changes
are visible by software as the mimpid has a different value. Once the new set of parameters is verified and achieved the
sign-off for RTL freeze, a new GitHub tag and version of the core is released.

20.1.3 PPA optimizations and new features

Non-logically equivalent PPA optimizations and new features are not allowed on a given set of RTL frozen parameters
(e.g., a faster divider). If PPA optimizations are logically-equivalent instead, they can be applied without changing the
mimpid value (as such changes are not visible in software). However, a new GitHub tag should be released and changes
documented.

107

CV32E40S User Manual

20.2 Released core versions

The verified parameter sets of the core, their implementation version, GitHub tags, and dates are reported here.

108 Chapter 20. Core Versions and RTL Freeze Rules

CHAPTER

TWENTYONE

GLOSSARY

• ALU: Arithmetic/Logic Unit

• ASIC: Application-Specific Integrated Circuit

• Byte: 8-bit data item

• CPU: Central Processing Unit, processor

• CSR: Control and Status Register

• Custom extension: Non-Standard extension to the RISC-V base instruction set (RISC-V Instruction Set Manual,
Volume I: User-Level ISA)

• EXE: Instruction Execute

• FPGA: Field Programmable Gate Array

• FPU: Floating Point Unit

• Halfword: 16-bit data item

• Halfword aligned address: An address is halfword aligned if it is divisible by 2

• ID: Instruction Decode

• IF: Instruction Fetch (Instruction Fetch)

• ISA: Instruction Set Architecture

• KGE: kilo gate equivalents (NAND2)

• LSU: Load Store Unit (Load-Store-Unit (LSU))

• M-Mode: Machine Mode (RISC-V Instruction Set Manual, Volume II: Privileged Architecture)

• NMI: Non-Maskable Interrupt

• OBI: Open Bus Interface

• PC: Program Counter

• PMA: Physical Memory Attribution

• PMP: Physical Memory Protection

• ePMP: Enhanced Physical Memory Protection

• PULP platform: Parallel Ultra Low Power Platform (<https://pulp-platform.org>)

• RV32C: RISC-V Compressed (C extension)

• RV32F: RISC-V Floating Point (F extension)

• SIMD: Single Instruction/Multiple Data

109

https://pulp-platform.org

CV32E40S User Manual

• Standard extension: Standard extension to the RISC-V base instruction set (RISC-V Instruction Set Manual,
Volume I: User-Level ISA)

• WARL: Write Any Values, Reads Legal Values

• WB: Write Back of instruction results

• WLRL: Write/Read Only Legal Values

• Word: 32-bit data item

• Word aligned address: An address is word aligned if it is divisible by 4

• WPRI: Reserved Writes Preserve Values, Reads Ignore Values

110 Chapter 21. Glossary

BIBLIOGRAPHY

[RISC-V-UNPRIV] RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 20191213 (De-
cember 13, 2019), https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/
riscv-spec-20191213.pdf

[RISC-V-PRIV] RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version
20211105-signoff (November 5, 2021), https://github.com/riscv/riscv-isa-manual/releases/download/
draft-20211105-c30284b/riscv-privileged.pdf

[RISC-V-RV32E] RISC-V Instruction Set Manual, Volume I: User-Level ISA, RV32E Base Integer Instruction
Set, Document version 20191214-draft (January 31, 2023), https://github.com/riscv/riscv-isa-manual/
releases/download/draft-20230131-c0b298a/riscv-spec.pdf

[RISC-V-DEBUG] RISC-V Debug Support, version 1.0-STABLE, fb702526127d0c8a4b343fc017e2c93137177df0,
April 14 2023, https://github.com/riscv/riscv-debug-spec/blob/f4381fed042927d9d1fba774898ae2484e5cdc71/
riscv-debug-stable.pdf

[RISC-V-CLIC] Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Exten-
sions, version 0.9-draft, 4/11/2023, https://github.com/riscv/riscv-fast-interrupt/blob/
ec831f3db6bd896336a9008263b4263177eb608c/clic.pdf

[RISC-V-SMSTATEEN] RISC-V State Enable Extension, Smstateen, Version 0.6.3-70b1471, 2021-10-13: frozen,
https://github.com/riscv/riscv-state-enable/releases/download/v0.6.3/Smstateen.pdf

[RISC-V-ZBA_ZBB_ZBC_ZBS] RISC-V Bit Manipulation ISA-extensions, Version 1.0.0-38-g865e7a7, 2021-06-28,
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf

[RISC-V-ZCA_ZCB_ZCMP_ZCMT] RISC-V Standard Extension for the Zca, Zcb, Zcmp, Zcmt subsets of Zc,
v1.0.0-RC5.7 (not ratified yet), https://github.com/riscv/riscv-code-size-reduction/releases/download/
v1.0.0-RC5.7/Zc-v1.0.0-RC5.7.pdf

[RISC-V-SMEPMP] PMP Enhancements for memory access and execution prevention on Machine mode, version
1.0, 12/2021, https://github.com/riscv/riscv-tee/blob/b20fda89e8e05605ca943af5897c0bb7f4db9841/
Smepmp/Smepmp.pdf

[RISC-V-CRYPTO] RISC-V Cryptography Extensions Volume I, Scalar & Entropy Source Instructions, Version
v1.0.0, 2’nd December, 2021: Ratified, https://github.com/riscv/riscv-crypto/releases/download/v1.0.
0-scalar/riscv-crypto-spec-scalar-v1.0.0.pdf

[OPENHW-OBI] OpenHW Open Bus Interface (OBI) protocol, version 1.5.0, https://github.com/openhwgroup/obi/
blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf

[SYMBIOTIC-RVFI] Symbiotic EDA RISC-V Formal Interface https://github.com/SymbioticEDA/riscv-formal/
blob/master/docs/rvfi.md

111

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20211105-c30284b/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20211105-c30284b/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20230131-c0b298a/riscv-spec.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20230131-c0b298a/riscv-spec.pdf
https://github.com/riscv/riscv-debug-spec/blob/f4381fed042927d9d1fba774898ae2484e5cdc71/riscv-debug-stable.pdf
https://github.com/riscv/riscv-debug-spec/blob/f4381fed042927d9d1fba774898ae2484e5cdc71/riscv-debug-stable.pdf
https://github.com/riscv/riscv-fast-interrupt/blob/ec831f3db6bd896336a9008263b4263177eb608c/clic.pdf
https://github.com/riscv/riscv-fast-interrupt/blob/ec831f3db6bd896336a9008263b4263177eb608c/clic.pdf
https://github.com/riscv/riscv-state-enable/releases/download/v0.6.3/Smstateen.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.0-RC5.7/Zc-v1.0.0-RC5.7.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.0-RC5.7/Zc-v1.0.0-RC5.7.pdf
https://github.com/riscv/riscv-tee/blob/b20fda89e8e05605ca943af5897c0bb7f4db9841/Smepmp/Smepmp.pdf
https://github.com/riscv/riscv-tee/blob/b20fda89e8e05605ca943af5897c0bb7f4db9841/Smepmp/Smepmp.pdf
https://github.com/riscv/riscv-crypto/releases/download/v1.0.0-scalar/riscv-crypto-spec-scalar-v1.0.0.pdf
https://github.com/riscv/riscv-crypto/releases/download/v1.0.0-scalar/riscv-crypto-spec-scalar-v1.0.0.pdf
https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf
https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf
https://github.com/SymbioticEDA/riscv-formal/blob/master/docs/rvfi.md
https://github.com/SymbioticEDA/riscv-formal/blob/master/docs/rvfi.md

	Changelog
	0.9.0
	0.8.0
	0.7.0
	0.6.0
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

	Introduction
	License
	Standards Compliance
	Synthesis guidelines
	ASIC Synthesis
	FPGA Synthesis

	Verification
	Contents
	History
	References
	Contributors

	Getting Started with CV32E40S
	Clock Gating Cell
	Register Cells

	Core Integration
	Synthesis Optimization
	Instantiation Template
	Parameters
	Interfaces

	Pipeline Details
	Multi- and Single-Cycle Instructions
	Hazards

	Instruction Fetch
	Misaligned Accesses
	Protocol
	Interface integrity

	Load-Store-Unit (LSU)
	Misaligned Accesses
	Protocol
	Interface integrity
	Physical Memory Protection (PMP) Unit
	Write buffer

	Xsecure extension
	Security alerts
	Data independent timing
	Dummy instruction insertion
	Random instruction for hint
	Register file ECC
	Hardened PC
	Hardened CSRs
	Interface integrity
	Bus protocol hardening
	Reduction of profiling infrastructure

	Physical Memory Attribution (PMA)
	Address range
	Main memory vs I/O
	Bufferable and Cacheable
	Integrity
	Default attribution
	Debug mode

	Physical Memory Protection (PMP)
	Debug mode

	Register File
	General Purpose Register File
	Error Detection

	Fence.i external handshake
	Sleep Unit
	Startup behavior
	WFI
	WFE

	Control and Status Registers
	CSR Map
	CSR Descriptions
	Jump Vector Table (jvt)
	Machine Status (mstatus)
	Machine ISA (misa)
	Machine Interrupt Enable Register (mie) - CLIC == 0
	Machine Interrupt Enable Register (mie) - CLIC == 1
	Machine Trap-Vector Base Address (mtvec) - CLIC == 0
	Machine Trap-Vector Base Address (mtvec) - CLIC == 1
	Machine Trap Vector Table Base Address (mtvt)
	Machine Status (mstatush)
	Machine Counter Enable (mcounteren)
	Machine Environment Configuration (menvcfg)
	Machine State Enable 0 (mstateen0)
	Machine State Enable 1 (mstateen1)
	Machine State Enable 2 (mstateen2)
	Machine State Enable 3 (mstateen3)
	Machine Environment Configuration (menvcfgh)
	Machine State Enable 0 (mstateen0h)
	Machine State Enable 1 (mstateen1h)
	Machine State Enable 2 (mstateen2h)
	Machine State Enable 3 (mstateen3h)
	Machine Counter-Inhibit Register (mcountinhibit)
	Machine Performance Monitoring Event Selector (mhpmevent3 .. mhpmevent31)
	Machine Scratch (mscratch)
	Machine Exception PC (mepc)
	Machine Cause (mcause) - CLIC == 0
	Machine Cause (mcause) - CLIC == 1
	Machine Trap Value (mtval)
	Machine Interrupt Pending Register (mip) - CLIC == 0
	Machine Interrupt Pending Register (mip) - CLIC == 1
	Machine Next Interrupt Handler Address and Interrupt Enable (mnxti)
	Machine Interrupt-Level Threshold (mintthresh)
	Machine Scratch Swap for Priv Mode Change (mscratchcsw)
	Machine Scratch Swap for Interrupt-Level Change (mscratchcswl)
	Trigger Select Register (tselect)
	Trigger Data 1 (tdata1)
	Match Control Type 2 (mcontrol)
	Exception Trigger (etrigger)
	Match Control Type 6 (mcontrol6)
	Trigger Data 1 (tdata1) - disabled view
	Trigger Data Register 2 (tdata2)
	Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x2
	Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x5
	Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0x6
	Trigger Data Register 2 (tdata2) - View when tdata1.TYPE is 0xF
	Trigger Info (tinfo)
	Debug Control and Status (dcsr)
	Debug PC (dpc)
	Debug Scratch Register 0/1 (dscratch0/1)
	Machine Cycle Counter (mcycle)
	Machine Instructions-Retired Counter (minstret)
	Machine Performance Monitoring Counter (mhpmcounter3 .. mhpmcounter31)
	Upper 32 Machine Cycle Counter (mcycleh)
	Upper 32 Machine Instructions-Retired Counter (minstreth)
	Upper 32 Machine Performance Monitoring Counter (mhpmcounter3h .. mhpmcounter31h)
	CPU Control (cpuctrl)
	Secure Seed 0
	Secure Seed 1
	Secure Seed 2
	Machine Vendor ID (mvendorid)
	Machine Architecture ID (marchid)
	Machine Implementation ID (mimpid)
	Hardware Thread ID (mhartid)
	Machine Configuration Pointer (mconfigptr)
	Machine Interrupt Status (mintstatus)
	Machine Security Configuration (mseccfg)
	Machine Security Configuration (mseccfgh)
	PMP Configuration (pmpcfg0-pmpcfg15)
	PMP Address (pmpaddr0 - pmpaddr63)

	Hardened CSRs

	Performance Counters
	Controlling the counters from software
	Time Registers (time(h))

	Exceptions and Interrupts
	Exceptions
	Non Maskable Interrupts
	CLINT Mode Interrupt Architecture
	Interrupt Interface
	Interrupts
	Nested Interrupt Handling

	CLIC Mode Interrupt Architecture
	Interrupt Interface
	Interrupts
	Nested Interrupt Handling

	Debug & Trigger
	Interface
	Core Debug Registers
	Debug state
	EBREAK Behavior
	Scenario 1 : Enter Exception
	Scenario 2 : Enter Debug Mode
	Scenario 3 : Exit Program Buffer & Restart Debug Code

	RISC-V Formal Interface
	New Additions
	Compatibility
	Trace output file
	Trace output format

	CORE-V Instruction Set Extensions
	Custom instructions
	Custom CSRs

	Core Versions and RTL Freeze Rules
	What happens after RTL Freeze?
	A bug is found
	RTL changes on non-verified yet parameters
	PPA optimizations and new features

	Released core versions

	Glossary
	Bibliography

