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CHAPTER

TWO

INTRODUCTION

CV32E40X is a 4-stage in-order 32-bit RISC-V processor core. Figure 2.1 shows a block diagram of the core.

Figure 2.1: Block Diagram of CV32E40X RISC-V Core

2.1 License

Copyright 2020 OpenHW Group.

Copyright 2018 ETH Zurich and University of Bologna.

Copyright and related rights are licensed under the Solderpad Hardware License, Version 0.51 (the “License”); you
may not use this file except in compliance with the License. You may obtain a copy of the License at http://solderpad.
org/licenses/SHL-0.51. Unless required by applicable law or agreed to in writing, software, hardware and materials
distributed under this License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations
under the License.
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2.2 Standards Compliance

CV32E40X is a standards-compliant 32-bit RISC-V processor. It follows these specifications:

Many features in the RISC-V specification are optional, and CV32E40X can be parameterized to enable or disable
some of them.

CV32E40X supports one of the following base integer instruction sets from [RISC-V-UNPRIV].

Table 2.1: CV32E40X Base Instruction Set
Base Integer Instruction Set Version Configurability
RV32I: RV32I Base Integer Instruction Set 2.1 optionally enabled with the RV32 parameter
RV32E: RV32E Base Integer Instruction Set 1.9 (not ratified yet) optionally enabled with the RV32 parameter

In addition, the following standard instruction set extensions are available from [RISC-V-UNPRIV],
[RISC-V-ZBA_ZBB_ZBC_ZBS], [RISC-V-CRYPTO] and [RISC-V-ZCA_ZCB_ZCMB_ZCMP_ZCMT].

6 Chapter 2. Introduction
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Table 2.2: CV32E40X Standard Instruction Set Extensions
Standard Extension Version Configurability
C: Standard Extension for Compressed Instructions 2.0 always enabled
M: Standard Extension for Integer Multiplication and Division 2.0 optionally enabled

with the M_EXT
parameter

Zicntr: Standard Extension for Base Counters and Timers 2.0 always enabled
Zihpm: Standard Extension for Hardware Performance Counters 2.0 always enabled
Zicsr: Control and Status Register Instructions 2.0 always enabled
Zifencei: Instruction-Fetch Fence 2.0 always enabled
Zca: Subset of the standard Zc Code-Size Reduction extension
consisting of a subset of C with the FP load/stores removed.

v0.70.1 (not ratified
yet; version will
change)

optionally enabled
with the ZC_EXT
parameter

Zcb: Subset of the standard Zc Code-Size Reduction extension
consisting of simple operations.

v0.70.1 (not ratified
yet; version will
change)

optionally enabled
with the ZC_EXT
parameter

Zcmb: Subset of the standard Zc Code-Size Reduction extension
consisting of load/store byte/half which overlap with c.fld, c.fldsp,
c.fsd.

v0.70.1 (not ratified
yet; version will
change)

optionally enabled
with the ZC_EXT
parameter

Zcmp: Subset of the standard Zc Code-Size Reduction exten-
sion consisting of push/pop and double move which overlap with
c.fsdsp.

v0.70.1 (not ratified
yet; version will
change)

optionally enabled
with the ZC_EXT
parameter

Zcmt: Subset of the standard Zc Code-Size Reduction extension
consisting of table jump.

v0.70.1 (not ratified
yet; version will
change)

optionally enabled
with the ZC_EXT
parameter

A: Atomic Instructions 2.1 optionally enabled
with the A_EXT
parameter

Zba: Bit Manipulation Address calculation instructions Version 1.0.0 optionally enabled
with the B_EXT
parameter

Zbb: Bit Manipulation Base instructions Version 1.0.0 optionally enabled
with the B_EXT
parameter

Zbc: Bit Manipulation Carry-Less Multiply instructions Version 1.0.0 optionally enabled
with the B_EXT
parameter

Zbs: Bit Manipulation Bit set, Bit clear, etc. instructions Version 1.0.0 optionally enabled
with the B_EXT
parameter

Zkt: Data Independent Execution Latency Version 1.0.0 always enabled
Zbkc: Constant time Carry-Less Multiply Version 1.0.0 optionally enabled

with the B_EXT
parameter

Zmmul: Multiplication subset of the M extension Version 0.1 optionally enabled
with the M_EXT
parameter

The following custom instruction set extensions are available.

2.2. Standards Compliance 7
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Table 2.3: CV32E40X Custom Instruction Set Extensions
Custom Extension Version Configurability
Xif : eXtension Inter-
face

0.1 (not finalized yet; version will
change)

optionally enabled with the X_EXT parame-
ter

Note: CV32E40X does not implement the F extension for single-precision floating-point instructions internal to the
core. The F extension can be supported by interfacing the CV32E40X to an external FPU via the eXtension interface.

Most content of the RISC-V privileged specification is optional. CV32E40X currently supports the following features
according to the RISC-V Privileged Specification [RISC-V-PRIV].

• M-Mode

• All CSRs listed in Control and Status Registers

• Base Counters, Timers and Hardware Performance Counters as described in Performance Counters controlled
by the NUM_MHPMCOUNTERS parameter

• Trap handling supporting direct mode or vectored mode as described at Exceptions and Interrupts

• Physical Memory Attribution (PMA) as described in Physical Memory Attribution (PMA)

2.3 Synthesis guidelines

The CV32E40X core is fully synthesizable. It has been designed mainly for ASIC designs, but FPGA synthesis is
supported as well.

All the files in the rtl and rtl/include folders are synthesizable. The top level module is called cv32e40x_core.

The user must provide a clock-gating module that instantiates the clock-gating cells of the target technology. This
file must have the same interface and module name of the one provided for simulation-only purposes at bhv/
cv32e40x_sim_clock_gate.sv (see Clock Gating Cell).

The constraints/cv32e40x_core.sdc file provides an example of synthesis constraints. No synthesis scripts are
provided.

2.3.1 ASIC Synthesis

ASIC synthesis is supported for CV32E40X. The whole design is completely synchronous and uses positive-edge
triggered flip-flops. A technology specific implementation of a clock gating cell as described in Clock Gating Cell
needs to be provided.

2.3.2 FPGA Synthesis

FPGA synthesis is supported for CV32E40X. The user needs to provide a technology specific implementation of a
clock gating cell as described in Clock Gating Cell.

8 Chapter 2. Introduction
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2.4 Verification

The verification environment (testbenches, testcases, etc.) for the CV32E40X core can be found at core-v-verif. It is
recommended that you start by reviewing the CORE-V Verification Strategy.

2.5 Contents

• Getting Started with CV32E40X discusses the requirements and initial steps to start using CV32E40X.

• Core Integration provides the instantiation template and gives descriptions of the design parameters as well as
the input and output ports.

• CV32E40X Pipeline described the overal pipeline structure.

• The instruction and data interfaces of CV32E40X are explained in Instruction Fetch and Load-Store-Unit (LSU),
respectively.

• Physical Memory Attribution (PMA) describes the Physical Memory Attribution (PMA) unit.

• The register-file is described in Register File.

• eXtension Interface describes the custom eXtension interface.

• Sleep Unit describes the Sleep unit.

• The control and status registers are explained in Control and Status Registers.

• Performance Counters gives an overview of the performance monitors and event counters available in
CV32E40X.

• Exceptions and Interrupts deals with the infrastructure for handling exceptions and interrupts.

• Debug & Trigger gives a brief overview on the debug infrastructure.

• RISC-V Formal Interface gives a brief overview of the RVFI module.

• Glossary provides definitions of used terminology.

2.6 History

CV32E40X started its life as a fork of the CV32E40P from the OpenHW Group <https://www.openhwgroup.org>.

2.7 References

1. Gautschi, Michael, et al. “Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint De-
vices.” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700-2713,
Oct. 2017

2. Schiavone, Pasquale Davide, et al. “Slow and steady wins the race? A comparison of ultra-low-power RISC-
V cores for Internet-of-Things applications.” 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS 2017)
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CHAPTER

THREE

GETTING STARTED WITH CV32E40X

This page discusses initial steps and requirements to start using CV32E40X in your design.

3.1 Clock Gating Cell

CV32E40X requires clock gating cells. These cells are usually specific to the selected target technology and
thus not provided as part of the RTL design. A simulation-only version of the clock gating cell is provided in
cv32e40x_sim_clock_gate.sv. This file contains a module called cv32e40x_clock_gate that has the follow-
ing ports:

• clk_i: Clock Input

• en_i: Clock Enable Input

• scan_cg_en_i: Scan Clock Gate Enable Input (activates the clock even though en_i is not set)

• clk_o: Gated Clock Output

And the following Parameters: * LIB : Standard cell library (semantics defined by integrator)

Inside CV32E40X, the clock gating cell is used in cv32e40x_sleep_unit.sv.

The cv32e40x_sim_clock_gate.sv file is not intended for synthesis. For ASIC synthesis and FPGA synthesis the
manifest should be adapted to use a customer specific file that implements the cv32e40x_clock_gate module using
design primitives that are appropriate for the intended synthesis target technology.

11
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CHAPTER

FOUR

CORE INTEGRATION

The main module is named cv32e40x_core and can be found in cv32e40x_core.sv. Below, the instantiation tem-
plate is given and the parameters and interfaces are described.

4.1 Instantiation Template

cv32e40x_core #(
.LIB ( 0 ),
.RV32 ( RV32I ),
.A_EXT ( 0 ),
.B_EXT ( B_NONE ),
.M_EXT ( M ),
.X_EXT ( 0 ),
.X_NUM_RS ( 2 ),
.X_ID_WIDTH ( 4 ),
.X_MEM_WIDTH ( 32 ),
.X_RFR_WIDTH ( 32 ),
.X_RFW_WIDTH ( 32 ),
.X_MISA ( 32'h0 ),
.X_ECS_XS ( 2'b0 ),
.ZC_EXT ( 0 ),
.DBG_NUM_TRIGGERS ( 1 ),
.NUM_MHPMCOUNTERS ( 1 ),
.PMA_NUM_REGIONS ( 1 ),
.PMA_CFG ( PMA_CFG[] ),
.SMCLIC ( 0 ),
.SMCLIC_ID_WIDTH ( 5 )

) u_core (
// Clock and reset
.clk_i (),
.rst_ni (),
.scan_cg_en_i (),

// Configuration
.boot_addr_i (),
.mtvec_addr_i (),
.dm_halt_addr_i (),
.dm_exception_addr_i (),
.mhartid_i (),

(continues on next page)
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(continued from previous page)

.mimpid_patch_i (),

// Instruction memory interface
.instr_req_o (),
.instr_gnt_i (),
.instr_addr_o (),
.instr_memtype_o (),
.instr_prot_o (),
.instr_dbg_o (),
.instr_rvalid_i (),
.instr_rdata_i (),
.instr_err_i (),

// Data memory interface
.data_req_o (),
.data_gnt_i (),
.data_addr_o (),
.data_atop_o (),
.data_be_o (),
.data_memtype_o (),
.data_prot_o (),
.data_dbg_o (),
.data_wdata_o (),
.data_we_o (),
.data_rvalid_i (),
.data_rdata_i (),
.data_err_i (),
.data_exokay_i (),

// Cycle Count
.mcycle_o (),

// eXtension interface
.xif_compressed_if (),
.xif_issue_if (),
.xif_commit_if (),
.xif_mem_if (),
.xif_mem_result_if (),
.xif_result_if (),

// Interrupt interface
.irq_i (),

.clic_irq_i (),

.clic_irq_id_i (),

.clic_irq_level_i (),

.clic_irq_priv_i (),

.clic_irq_shv_i (),

// Fencei flush handshake
.fencei_flush_req_o (),
.fencei_flush_ack_i (),

(continues on next page)
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(continued from previous page)

// Debug interface
.debug_req_i (),
.debug_havereset_o (),
.debug_running_o (),
.debug_halted_o (),

// Special control signals
.fetch_enable_i (),
.core_sleep_o ()

);

4.2 Parameters

Note: All eXtension interface parameters (X_NUM_RS, X_ID_WIDTH, X_MEM_WIDTH, X_RFR_WIDTH and
X_RFW_WIDTH) must be set with values matching the actual if_xif instance and the coprocessor/interconnect available
outside of CV32E40X.

4.2. Parameters 15
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Name Type/RangeDe-
fault

Description

LIB int 0 Standard cell library (semantics defined by integrator)
RV32 rv32_e RV32I Base Integer Instruction Set. RV32 = RV32I: RV32I Base Integer Instruction Set.

RV32 = RV32E: RV32E Base Integer Instruction Set.
A_EXT bit 0 Enable Atomic Instruction (A) support (not implemented yet)
B_EXT b_ext_e B_NONEEnable Bit Manipulation support. B_EXT = B_NONE: No Bit Manipulation instruc-

tions are supported. B_EXT = ZBA_ZBB_ZBS: Zba, Zbb and Zbs are supported.
B_EXT = ZBA_ZBB_ZBC_ZBS: Zba, Zbb, Zbc and Zbs are supported.

M_EXT m_ext_e M Enable Multiply / Divide support. M_EXT = M_NONE: No multiply / divide instruc-
tions are supported. M_EXT = ZMMUL: The multiplication subset of the M extension
is supported. M_EXT = M: The M extension is supported.

X_EXT bit 0 Enable eXtension Interface (X) support, see eXtension Interface
X_NUM_RSint

(2..3)
2 Number of register file read ports that can be used by the eXtension interface.

X_ID_WIDTHint
(3..32)

4 Identification width for the eXtension interface.

X_MEM_WIDTHint (32
64,
128,
256)

32 Memory access width for loads/stores via the eXtension interface.

X_RFR_WIDTHint (32,
64)

32 Register file read access width for the eXtension interface.

X_RFW_WIDTHint (32,
64)

32 Register file write access width for the eXtension interface.

X_MISA logic
[31:0]

32’h0 MISA extensions implemented on the eXtension interface, see Machine ISA (misa).
X_MISA can only be used to set a subset of the following: {P, V, F, D, Q, X, M}.

X_ECS_XSlogic
[1:0]

2’b0 Default value for mstatus.XS if X_EXT = 1, see Machine Status (mstatus).

ZC_EXT bit 0 Enable Zca, Zcb, Zcmb, Zcmp, Zcmt extension support.
NUM_MHPMCOUNTERSint

(0..29)
1 Number of MHPMCOUNTER performance counters, see Performance Counters

DBG_NUM_TRIGGERSint
(0..4 )

1 Number of debug triggers, see Debug & Trigger

PMA_NUM_REGIONSint
(0..16)

0 Number of PMA regions

PMA_CFG[]pma_cfg_tPMA_R_DEFAULTPMA configuration. Array of pma_cfg_t with PMA_NUM_REGIONS entries, see
Physical Memory Attribution (PMA)

SMCLIC int
(0..1 )

0 Is Smclic supported?

SMCLIC_ID_WIDTHint
(1..10
)

5 Width of clic_irq_id_i and clic_irq_id_o. The maximum number of sup-
ported interrupts in CLIC mode is 2^SMCLIC_ID_WIDTH. Trap vector table align-
ment is restricted as described in Machine Trap Vector Table Base Address (mtvt).

16 Chapter 4. Core Integration
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4.3 Interfaces

Sig-
nal(s)

Width Dir Description

clk_i 1 in Clock signal
rst_ni 1 in Active-low asynchronous reset
scan_cg_en_i1 in Scan clock gate enable. Design for test (DfT) related signal. Can be used during scan

testing operation to force instantiated clock gate(s) to be enabled. This signal should
be 0 during normal / functional operation.

boot_addr_i32 in Boot address. First program counter after reset = boot_addr_i. Must be word
aligned. Do not change after enabling core via fetch_enable_i

mtvec_addr_i32 in mtvec address. Initial value for the address part of Machine Trap-Vector Base Address
(mtvec) - SMCLIC == 0. Must be 128-byte aligned (i.e. mtvec_addr_i[6:0] = 0).
Do not change after enabling core via fetch_enable_i

dm_halt_addr_i32 in Address to jump to when entering Debug Mode, see Debug & Trigger. Must be word
aligned. Do not change after enabling core via fetch_enable_i

dm_exception_addr_i32 in Address to jump to when an exception occurs when executing code during Debug
Mode, see Debug & Trigger. Must be word aligned. Do not change after enabling
core via fetch_enable_i

mhartid_i32 in Hart ID, usually static, can be read from Hardware Thread ID (mhartid) CSR
mimpid_patch_i4 in Implementation ID patch. Must be static. Readable as part of Machine Implementation

ID (mimpid) CSR.
instr_* Instruction fetch interface, see Instruction Fetch
data_* Load-store unit interface, see Load-Store-Unit (LSU)
mcycle_oCycle Counter Output
irq_* Interrupt inputs, see Exceptions and Interrupts
clic_*_iCLIC interface, see Exceptions and Interrupts
debug_* Debug interface, see Debug & Trigger
fetch_enable_i1 in Enable the instruction fetch of CV32E40X. The first instruction fetch after reset de-

assertion will not happen as long as this signal is 0. fetch_enable_i needs to be set
to 1 for at least one cycle while not in reset to enable fetching. Once fetching has been
enabled the value fetch_enable_i is ignored.

core_sleep_o1 out Core is sleeping, see Sleep Unit.
xif_compressed_ifeXtension compressed interface, see Compressed interface
xif_issue_ifeXtension issue interface, see Issue interface
xif_commit_ifeXtension commit interface, see Commit interface
xif_mem_ifeXtension memory interface, see Memory (request/response) interface
xif_mem_result_ifeXtension memory result interface, see Memory result interface
xif_result_ifeXtension result interface, see Result interface

4.3. Interfaces 17
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Figure 4.1: CV32E40X Pipeline
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FIVE

PIPELINE DETAILS

CV32E40X has a 4-stage in-order completion pipeline, the 4 stages are:

Instruction Fetch (IF) Fetches instructions from memory via an aligning prefetch buffer, capable of fetching 1 in-
struction per cycle if the instruction side memory system allows. The IF stage also pre-decodes RVC instructions
into RV32I base instructions. See Instruction Fetch for details.

Instruction Decode (ID) Decodes fetched instruction and performs required register file reads. Jumps are taken from
the ID stage.

Execute (EX) Executes the instructions. The EX stage contains the ALU, Multiplier and Divider. Branches (with their
condition met) are taken from the EX stage. Multi-cycle instructions will stall this stage until they are complete.
The address generation part of the load-store-unit (LSU) is contained in EX as well.

Writeback (WB) Writes the result of ALU, Multiplier, Divider, or Load instructions instructions back to the register
file.

5.1 Multi- and Single-Cycle Instructions

Table 5.1 shows the cycle count per instruction type. Some instructions have a variable time, this is indicated as a range
e.g. 1..32 means that the instruction takes a minimum of 1 cycle and a maximum of 32 cycles. The cycle counts assume
zero stall on the instruction-side interface and zero stall on the data-side memory interface.
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Table 5.1: Cycle counts per instruction type
In-
struc-
tion
Type

Cycles Description

Inte-
ger
Com-
pu-
ta-
tional

1 Integer Computational Instructions are defined in the
RISCV-V RV32I Base Integer Instruction Set.

CSR
Ac-
cess

4 (mstatus, mepc, mtvec, mcause, mcycle,
minstret, mhpmcounter*, mcycleh, min-
streth, mhpmcounter*h, mcountinhibit, mh-
pmevent*, dscr, dpc, dscratch0, dscratch1,
privlv)
1 (all the other CSRs)

CSR Access Instruction are defined in ‘Zicsr’ of the RISC-V
specification.

Load/Store1
2 (non-word aligned word transfer)
2 (halfword transfer crossing word bound-
ary)

Load/Store is handled in 1 bus transaction using both EX and
WB stages for 1 cycle each. For misaligned word transfers
and for halfword transfers that cross a word boundary 2 bus
transactions are performed using EX and WB stages for 2
cycles each.

Mul-
tipli-
ca-
tion

1 (mul)
4 (mulh, mulhsu, mulhu)

CV32E40X uses a single-cycle 32-bit x 32-bit multiplier
with a 32-bit result. The multiplications with upper-word
result take 4 cycles to compute.

Di-
vi-
sion
Re-
main-
der

3 - 35
3 - 35

The number of cycles depends on the divider operand value
(operand b), i.e. in the number of leading bits at 0. The
minimum number of cycles is 3 when the divider has zero
leading bits at 0 (e.g., 0x8000000). The maximum number
of cycles is 35 when the divider is 0

Jump 2
3 (target is a non-word-aligned non-RVC in-
struction)

Jumps are performed in the ID stage. Upon a jump the IF
stage (including prefetch buffer) is flushed. The new PC re-
quest will appear on the instruction-side memory interface
the same cycle the jump instruction is in the ID stage.

mret 2
3 (target is a non-word-aligned non-RVC in-
struction)

Mret is performed in the ID stage. Upon an mret the IF
stage (including prefetch buffer) is flushed. The new PC re-
quest will appear on the instruction-side memory interface
the same cycle the mret instruction is in the ID stage.

Branch
(Not-
Taken)

1 Any branch where the condition is not met will not stall.

Branch
(Taken)

3
4 (target is a non-word-aligned non-RVC in-
struction)

The EX stage is used to compute the branch decision. Any
branch where the condition is met will be taken from the EX
stage and will cause a flush of the IF stage (including prefetch
buffer) and ID stage.

In-
struc-
tion
Fence

5
6 (target is a non-word-aligned non-RVC in-
struction)

The FENCE.I instruction as defined in ‘Zifencei’ of the
RISC-V specification. Internally it is implemented as a jump
to the instruction following the fence. The jump performs the
required flushing as described above.

20 Chapter 5. Pipeline Details



CORE-V-Docs Documentation

5.2 Hazards

The CV32E40X experiences a 1 cycle penalty on the following hazards.

• Load data hazard (in case the instruction immediately following a load uses the result of that load)

• Jump register (jalr) data hazard (in case that a jalr depends on the result of an immediately preceding non-load
instruction)

The CV32E40X experiences a 2 cycle penalty on the following hazards.

• Jump register (jalr) data hazard (in case that a jalr depends on the result of an immediately preceding load
instruction)

5.2. Hazards 21
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CHAPTER

SIX

INSTRUCTION FETCH

The Instruction Fetch (IF) stage of the CV32E40X is able to supply one instruction to the Instruction Decode (ID )
stage per cycle if the external bus interface is able to serve one instruction per cycle. In case of executing compressed
instructions, on average less than one 32-bit instruction fetch will we needed per instruction in the ID stage.

For optimal performance and timing closure reasons, a prefetcher is used which fetches instructions via the external
bus interface from for example an externally connected instruction memory or instruction cache.

The prefetch unit performs word-aligned 32-bit prefetches and stores the fetched words in an alignment buffer with
three entries. As a result of this (speculative) prefetch, CV32E40X can fetch up to three words outside of the code
region and care should therefore be taken that no unwanted read side effects occur for such prefetches outside of the
actual code region.

Table 6.1 describes the signals that are used to fetch instructions. This interface is a simplified version of the interface
that is used by the LSU, which is described in Load-Store-Unit (LSU). The difference is that no writes are possible and
thus it needs fewer signals.

Table 6.1: Instruction Fetch interface signals
Signal Di-

rec-
tion

Description

instr_req_o out-
put

Request valid, will stay high until instr_gnt_i is high for one cycle

instr_gnt_i input The other side accepted the request. instr_addr_o, instr_memtype_o and
instr_prot_o may change in the next cycle.

instr_addr_o[31:0]out-
put

Address, word aligned

instr_memtype_o[1:0]out-
put

Memory Type attributes (cacheable, bufferable)

instr_prot_o[2:0]out-
put

Protection attributes

instr_dbg_o out-
put

Debug mode access

instr_rvalid_i input instr_rdata_i and instr_err_i are valid when instr_rvalid_i is high. This
signal will be high for exactly one cycle per request.

instr_rdata_i[31:0]input Data read from memory
instr_err_i input An instruction interface error occurred

23
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6.1 Misaligned Accesses

Externally, the IF interface performs word-aligned instruction fetches only. Misaligned instruction fetches are handled
by performing two separate word-aligned instruction fetches. Internally, the core can deal with both word- and half-
word-aligned instruction addresses to support compressed instructions. The LSB of the instruction address is ignored
internally.

6.2 Protocol

The instruction bus interface is compliant to the OBI protocol (see [OPENHW-OBI] for detailed signal and protocol
descriptions). The CV32E40X instruction fetch interface does not implement the following optional OBI signals: we,
be, wdata, auser, wuser, aid, rready, ruser, rid. These signals can be thought of as being tied off as specified in the OBI
specification. The CV32E40X instruction fetch interface can cause up to two outstanding transactions.

Figure 6.1 and Figure 6.3 show example timing diagrams of the protocol.

Figure 6.1: Back-to-back Memory Transactions

Figure 6.2: Back-to-back Memory Transactions with bus errors on A2/RD2 and A4/RD4

Figure 6.3: Multiple Outstanding Memory Transactions
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Figure 6.4: Multiple Outstanding Memory Transactions with bus error on A1/RD1

6.2. Protocol 25
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CHAPTER

SEVEN

LOAD-STORE-UNIT (LSU)

The Load-Store Unit (LSU) of the core takes care of accessing the data memory. Load and stores on words (32 bit),
half words (16 bit) and bytes (8 bit) are supported.

Table 7.1 describes the signals that are used by the LSU.

Table 7.1: LSU interface signals
Signal Di-

rec-
tion

Description

data_req_o out-
put

Request valid, will stay high until data_gnt_i is high for one cycle

data_gnt_i in-
put

The other side accepted the request. data_addr_o, data_atop_o, data_be_o,
data_memtype_o[2:0], data_prot_o, data_wdata_o, data_we_omay change in the next
cycle.

data_addr_o[31:0]out-
put

Address, sent together with data_req_o.

data_atop_o[5:0]out-
put

Atomic attributes, sent together with data_req_o.

data_be_o[3:0]out-
put

Byte Enable. Is set for the bytes to write/read, sent together with data_req_o.

data_memtype_o[1:0]out-
put

Memory Type attributes (cacheable, bufferable), sent together with data_req_o.

data_prot_o[2:0]out-
put

Protection attributes, sent together with data_req_o.

data_dbg_o out-
put

Debug mode access, sent together with data_req_o.

data_wdata_o[31:0]out-
put

Data to be written to memory, sent together with data_req_o.

data_we_o out-
put

Write Enable, high for writes, low for reads. Sent together with data_req_o.

data_rvalid_iin-
put

data_rvalid_i will be high for exactly one cycle to signal the end of the response phase of
for both read and write transactions. For a read transaction data_rdata_i holds valid data
when data_rvalid_i is high.

data_rdata_i[31:0]in-
put

Data read from memory. Only valid when data_rvalid_i is high.

data_err_i in-
put

A data interface error occurred. Only valid when data_rvalid_i is high.

data_exokay_iin-
put

Exclusive transaction status. Only valid when data_rvalid_i is high.
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7.1 Misaligned Accesses

Misaligned transaction are supported in hardware for Main memory regions, see Physical Memory Attribution (PMA).
For loads and stores in Main memory where the effective address is not naturally aligned to the referenced datatype (i.e.,
on a four-byte boundary for word accesses, and a two-byte boundary for halfword accesses) the load/store is performed
as two bus transactions in case that the data item crosses a word boundary. A single load/store instruction is therefore
performed as two bus transactions for the following scenarios:

• Load/store of a word for a non-word-aligned address

• Load/store of a halfword crossing a word address boundary

In both cases the transfer corresponding to the lowest address is performed first. All other scenarios can be handled
with a single bus transaction.

Misaligned transactions are not supported in I/O regions and will result in an exception trap when attempted, see
Exceptions and Interrupts.

7.2 Protocol

The data bus interface is compliant to the OBI protocol (see [OPENHW-OBI] for detailed signal and protocol descrip-
tions). The CV32E40X data interface does not implement the following optional OBI signals: auser, wuser, aid, rready,
ruser, rid. These signals can be thought of as being tied off as specified in the OBI specification. The CV32E40X data
interface can cause up to two outstanding transactions.

The OBI protocol that is used by the LSU to communicate with a memory works as follows.

The LSU provides a valid address on data_addr_o, control information on data_we_o, data_be_o (as well as write
data on data_wdata_o in case of a store) and sets data_req_o high. The memory sets data_gnt_i high as soon
as it is ready to serve the request. This may happen at any time, even before the request was sent. After a request has
been granted the address phase signals (data_addr_o, data_we_o, data_be_o and data_wdata_o) may be changed
in the next cycle by the LSU as the memory is assumed to already have processed and stored that information. After
granting a request, the memory answers with a data_rvalid_i set high if data_rdata_i is valid. This may happen
one or more cycles after the request has been granted. Note that data_rvalid_imust also be set high to signal the end
of the response phase for a write transaction (although the data_rdata_i has no meaning in that case). When multiple
granted requests are outstanding, it is assumed that the memory requests will be kept in-order and one data_rvalid_i
will be signalled for each of them, in the order they were issued.

Figure 7.1, Figure 7.2, Figure 7.3 and Figure 7.4 show example timing diagrams of the protocol.

Figure 7.1: Basic Memory Transaction

Figure 7.2: Back-to-back Memory Transactions

Figure 7.3: Slow Response Memory Transaction

28 Chapter 7. Load-Store-Unit (LSU)



CORE-V-Docs Documentation

Figure 7.4: Multiple Outstanding Memory Transactions

7.3 Write buffer

CV32E40X contains a a single entry write buffer that is used for bufferable transfers. A bufferable transfer is a write
transfer originating from a store instruction, where the write address is inside a bufferable region defined by the PMA
(Physical Memory Attribution (PMA)). Note that Store Conditional (SC) and Atomic Memory Operation (AMO) in-
structions will not utilize the write buffer.

The write buffer (when not full) allows CV32E40X to proceed executing instructions without having to wait for
data_gnt_i = 1 and data_rvalid_i = 1 for these bufferable transers.

Note: On the OBI interface data_gnt_i = 1 and data_rvalid_i = 1 still need to be signaled for every transfer (as
specified in [OPENHW-OBI]), also for bufferable transfers.

Bus transfers will occur in program order, no matter if transfers are bufferable and non-bufferable. Transactions in the
write buffer must be completed before the CV32E40X is able to:

• Retire a fence instruction

• Enter SLEEP mode

7.3. Write buffer 29
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CHAPTER

EIGHT

PHYSICAL MEMORY ATTRIBUTION (PMA)

The CV32E40X includes a Physical Memory Attribution (PMA) unit that allows compile time attribution of the physical
memory map. The PMA is configured through the top level parameters PMA_NUM_REGIONS and PMA_CFG[]. The num-
ber of PMA regions is configured through the PMA_NUM_REGIONS parameter. Valid values are 0-16. The configuration
array, PMA_CFG[], must consist of PMA_NUM_REGIONS entries of the type pma_cfg_t, defined in cv32e40x_pkg.sv:

typedef struct packed {
logic [31:0] word_addr_low;
logic [31:0] word_addr_high;
logic main;
logic bufferable;
logic cacheable;
logic atomic;

} pma_cfg_t;

In case of address overlap between PMA regions, the region with the lowest index in PMA_CFG[]will have priority. The
PMA can be deconfigured by setting PMA_NUM_REGIONS=0. When doing this, PMA_CFG[] should be left unconnected.

8.1 Address range

The address boundaries of a PMA region are set in word_addr_low/word_addr_high. These contain bits 33:2 of 34-
bit, word aligned addresses. To get an address match, the transfer address addrmust be in the range {word_addr_low,
2'b00} <= addr[33:0] < {word_addr_high, 2'b00}. Note that addr[33:32] = 2'b00 as the CV32E40X
does not support Sv32.

8.2 Main memory vs I/O

Memory ranges can be defined as either main (main=1) or I/O (main=0). Code execution is allowed from main memory
and main memory is considered to be idempotent. Non-aligned transactions are supported in main memory. Code
execution is not allowed from I/O regions and an instruction access fault (exception code 1) is raised when attempting
to execute from such regions. I/O regions are considered to be non-idempotent and therefore the PMA will prevent
speculative accesses to such regions. Non-aligned transactions are not supported in I/O regions. An attempt to perform
a non-naturally aligned load access to an I/O region causes a precise load access fault (exception code 5). An attempt
to perform a non-naturally aligned store access to an I/O region causes a precise store access fault (exception code 7).
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8.3 Bufferable and Cacheable

Accesses to regions marked as bufferable (bufferable=1) will result in the OBI mem_type[0] bit being set, except
if the access was an instruction fetch, a load, or part of an atomic memory operation. Bufferable stores will utilize the
write buffer, see Write buffer.

Accesses to regions marked as cacheable (cacheable=1) will result in the OBI mem_type[1] bit being set.

Note: The PMA must be configured such that accesses to the external debug module are non-cacheable, to enable its
program buffer to function correctly.

8.4 Atomic operations

Regions supporting atomic operations can be defined by setting atomic=1. An attempt to perform a Load-Reserved
to a region in which Atomic operations are not allowed will cause a precise load access fault (exception code 5). An
attempt to perform a Store-Conditional or Atomic Memory Operation (AMO) to a region in which Atomic operations
are not allowed will cause a precise store/AMO access fault (exception code 7). Note that the atomic attribute is only
used when the RV32A extension is included.

8.5 Default attribution

If the PMA is deconfigured (PMA_NUM_REGIONS=0), the entire memory range will be treated as main mem-
ory (main=1), non-bufferable (bufferable=0), non-cacheable (cacheable=0) and atomics will be supported
(atomic=1).

If the PMA is configured (PMA_NUM_REGIONS > 0), memory regions not covered by any PMA regions are treated
as I/O memory (main=0), non-bufferable (bufferable=0), non-cacheable (cacheable=0) and atomics will not be
supported (atomic=0).

Every instruction fetch, load and store will be subject to PMA checks and failed checks will result in an exception.
PMA checks cannot be disabled. See Exceptions and Interrupts for details.
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NINE

REGISTER FILE

Source file: rtl/cv32e40x_register_file.sv

CV32E40X has 31 32-bit wide registers which form registers x1 to x31. Register x0 is statically bound to 0 and can
only be read, it does not contain any sequential logic.

The number of read ports and the number of write ports of the register file depends on the parameter settings of
CV32E40X. The register file has two read ports and one write port for the default parameter settings. If X_EXT = 1,
then depending on the other eXtension interface parameters up to three read ports and two write ports can be instanti-
ated. Register file reads are performed in the ID stage. Register file writes are performed in the WB stage.

9.1 General Purpose Register File

The general purpose register file is flip-flop-based. It uses regular, positive-edge-triggered flip-flops to implement the
registers.
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CHAPTER

TEN

EXTENSION INTERFACE

The eXtension interface, also called CORE-V-XIF, enables extending CV32E40X with (custom or standardized) in-
structions without the need to change the RTL of CV32E40X itself. Extensions can be provided in separate modules
external to CV32E40X and are integrated at system level by connecting them to the eXtension interface.

The eXtension interface provides low latency (tightly integrated) read and write access to the CV32E40X register
file. All opcodes which are not used (i.e. considered to be invalid) by CV32E40X can be used for extensions. It is
recommended however that custom instructions do not use opcodes that are reserved/used by RISC-V International.

The eXtension interface enables extension of CV32E40X with:

• Custom ALU type instructions.

• Custom load/store type instructions.

• Custom CSRs and related instructions.

Control-Tranfer type instructions (e.g. branches and jumps) are not supported via the eXtension interface.

Note: CV32E40X does for example not implement the F (single-precision floating-point), P (Packed SIMD) or V
(Vector) extensions internal to the core. Such extensions are considered good candidates to be implemented as external
coprocessor functionality connected via the eXtension interface.

10.1 CORE-V-XIF

The eXtension interface of complies to the [OPENHW-XIF] specification. The reader is deferred to [OPENHW-XIF]
for explanation of the interface protocol and semantics. Here we only list the top level interface pins to clarify the
mapping of CV32E40X’s SystemVerilog interfaces to CV32E40X signals.

10.1.1 Compressed interface

Table 10.1 describes the compressed interface signals.
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Table 10.1: Compressed interface signals
Signal Type Di-

rec-
tion

Description

xif_compressed_if.
compressed_valid

logic out-
put

Compressed request valid. Request to uncompress a compressed instruc-
tion.

xif_compressed_if.
compressed_ready

logic in-
put

Compressed request ready. The transactions signaled via
compressed_req and compressed_resp are accepted when
compressed_valid and compressed_ready are both 1.

xif_compressed_if.
compressed_req

x_compressed_req_tout-
put

Compressed request packet.

xif_compressed_if.
compressed_resp

x_compressed_resp_tin-
put

Compressed response packet.

10.1.2 Issue interface

Table 10.2 describes the issue interface signals.

Table 10.2: Issue interface signals
Signal Type Di-

rec-
tion

Description

xif_issue_if.
issue_valid

logic out-
put

Issue request valid. Indicates that CV32E40X wants to offload an instruc-
tion.

xif_issue_if.
issue_ready

logic input Issue request ready. The transaction signaled via issue_req and
issue_resp is accepted when issue_valid and issue_ready are both
1.

xif_issue_if.
issue_req

x_issue_req_tout-
put

Issue request packet.

xif_issue_if.
issue_resp

x_issue_resp_tinput Issue response packet.

10.1.3 Commit interface

Table 10.3 describes the commit interface signals.

Table 10.3: Commit interface signals
Signal Type Di-

rec-
tion

Description

xif_commit_if.
commit_valid

logic out-
put

Commit request valid. Indicates that CV32E40X has valid commit or kill informa-
tion for an offloaded instruction. There is no corresponding ready signal (it is implicit
and assumed 1). The coprocessor shall be ready to observe the commit_valid and
commit_kill signals at any time coincident or after an issue transaction initiation.

xif_commit_if.
commit

x_commit_tout-
put

Commit packet.
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10.1.4 Memory (request/response) interface

Table 10.4 describes the memory (request/response) interface signals.

Table 10.4: Memory (request/response) interface signals
Signal Type Di-

rec-
tion

Description

xif_mem_if.
mem_valid

logic in-
put

Memory (request/response) valid. Indicates that the coprocessor wants to per-
form a memory transaction for an offloaded instruction.

xif_mem_if.
mem_ready

logic out-
put

Memory (request/response) ready. The memory (request/response) signaled via
mem_req is accepted by CV32E40X when mem_valid and mem_ready are both
1.

xif_mem_if.
mem_req

x_mem_req_tin-
put

Memory request packet.

xif_mem_if.
mem_resp

x_mem_resp_tout-
put

Memory response packet. Response to memory request (e.g. PMA check re-
sponse). Note that this is not the memory result.

10.1.5 Memory result interface

Table 10.5 describes the memory result interface signals.

Table 10.5: Memory result interface signals
Signal Type Di-

rec-
tion

Description

xif_mem_result_if.
mem_result_valid

logic out-
put

Memory result valid. Indicates that CV32E40X has a valid memory result for the
corresponding memory request. There is no corresponding ready signal (it is im-
plicit and assumed 1). The coprocessor must be ready to accept mem_result when-
ever mem_result_valid is 1.

xif_mem_result_if.
mem_result

x_mem_result_tout-
put

Memory result packet.

10.1.6 Result interface

Table 10.6 describes the result interface signals.

Table 10.6: Result interface signals
Signal Type Di-

rec-
tion

Description

xif_result_if.
result_valid

logic input Result request valid. Indicates that the coprocessor has a valid result (write
data or exception) for an offloaded instruction.

xif_result_if.
result_ready

logic out-
put

Result request ready. The result signaled via result is accepted by the
core when result_valid and result_ready are both 1.

xif_result_if.
result

x_result_tinput Result packet.
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10.2 Integration

When integrating the eXtension interface, all parameters used by both CV32E40X, the SystemVerilog interface and
the coprocessor/interconnect must match. Parameters or localparams should be used at the hierarchy level above
CV32E40X as shown in Figure 10.1.

Figure 10.1: eXtenstion interface integration

10.3 Timing

For optimal system level performance CV32E40X, the coprocessor(s) and the optional interconnect are advised to
adhere to the timing budgets shown in Figure 10.2.

All eXtension interface signals not explicitly covered in Figure 10.2 should follow the generic timing budget that is
outlined - 20% for the processor, 20% for the interconnect and 60% for the coprocessor.

The CV32E40X github repository contains a constraints file as seen from the processor: cv32e40x_core.sdc
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Figure 10.2: eXtenstion interface timing budgets
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CHAPTER

ELEVEN

FENCE.I EXTERNAL HANDSHAKE

CV32E40X includes an external handshake that will be exercised upon execution of the fence.i instruction. The hand-
shake is composed of the signals fencei_flush_req_o and fencei_flush_ack_i and can for example be used to
flush an externally connected cache.

The fencei_flush_req_o signal will go high upon executing a fence.i instruction once possible earlier store
instructions have fully completed (including emptying of the the write buffer). The fencei_flush_req_o signal
will go low again the cycle after sampling both fencei_flush_req_o and fencei_flush_ack_i high. Once
fencei_flush_req_o has gone low again a branch will be taken to the instruction after the fence.i thereby flushing
possibly prefetched instructions.

Fence instructions are not impacted by the distinction between main and I/O regions (defined in Physical Memory
Attribution (PMA)) and execute as a conservative fence on all operations, ignoring the predecessor and successor fields.

Note: If the fence.i external handshake is not used by the environment of CV32E40X, then it is recommended to
tie the fencei_flush_ack_i to 1 in order to avoid stalling fence.i instructions indefinitely.
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CHAPTER

TWELVE

SLEEP UNIT

Source File: rtl/cv32e40x_sleep_unit.sv

The Sleep Unit contains and controls the instantiated clock gate, see Clock Gating Cell, that gates clk_i and produces
a gated clock for use by the other modules inside CV32E40X. The Sleep Unit is the only place in which clk_i itself
is used; all other modules use the gated version of clk_i.

The clock gating in the Sleep Unit is impacted by the following:

• rst_ni

• fetch_enable_i

• wfi instruction

Table 12.1 describes the Sleep Unit interface.

Table 12.1: Sleep Unit interface signals
Signal Di-

rec-
tion

Description

core_sleep_oout-
put

Core is sleeping because of a wfi instruction. If core_sleep_o = 1, then clk_i is gated off
internally and it is allowed to gate off clk_i externally as well. See WFI for details.

12.1 Startup behavior

clk_i is internally gated off (while signaling core_sleep_o = 0) during CV32E40X startup:

• clk_i is internally gated off during rst_ni assertion

• clk_i is internally gated off from rst_ni deassertion until fetch_enable_i = 1

After initial assertion of fetch_enable_i, the fetch_enable_i signal is ignored until after a next reset assertion.
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12.2 WFI

The wfi instruction can under certain conditions be used to enter sleep mode awaiting a locally enabled interrupt to
become pending. The operation of wfi is unaffected by the global interrupt bits in mstatus.

A wfi will not enter sleep mode, but will be executed as a regular nop, if any of the following conditions apply:

• debug_req_i = 1 or a debug request is pending

• The core is in debug mode

• The core is performing single stepping (debug)

• The core has a trigger match (debug)

If a wfi causes sleep mode entry, then core_sleep_o is set to 1 and clk_i is gated off internally. clk_i is allowed
to be gated off externally as well in this scenario. A wake-up can be triggered by any of the following:

• A locally enabled interrupt is pending

• A debug request is pending

• Core is in debug mode

Upon wake-up core_sleep_o is set to 0, clk_i will no longer be gated internally, must not be gated off externally,
and instruction execution resumes.

If one of the above wake-up conditions coincides with the wfi instruction, then sleep mode is not entered and
core_sleep_o will not become 1.

Figure 12.1 shows an example waveform for sleep mode entry because of a wfi instruction.

Figure 12.1: wfi example
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THIRTEEN

CONTROL AND STATUS REGISTERS

13.1 CSR Map

Table 13.1 lists all implemented CSRs. To columns in Table 13.1 may require additional explanation:

The Parameter column identifies those CSRs that are dependent on the value of specific compile/synthesis parameters.
If these parameters are not set as indicated in Table 13.1 then the associated CSR is not implemented. If the parameter
column is empty then the associated CSR is always implemented.

The Privilege column indicates the access mode of a CSR. The first letter indicates the lowest privilege level required
to access the CSR. Attempts to access a CSR with a higher privilege level than the core is currently running in will
throw an illegal instruction exception. This is largely a moot point for the CV32E40X as it only supports machine and
debug modes. The remaining letters indicate the read and/or write behavior of the CSR when accessed by the indicated
or higher privilge level:

• RW: CSR is read-write. That is, CSR instructions (e.g. csrrw) may write any value and that value will be
returned on a subsequent read (unless a side-effect causes the core to change the CSR value).

• RO: CSR is read-only. Writes by CSR instructions raise an illegal instruction exception.

Writes of a non-supported value to WLRL bitfields of a RW CSR do not result in an illegal instruction exception. The
exact bitfield access types, e.g. WLRL or WARL, can be found in the RISC-V privileged specification.

Reads or writes to a CSR that is not implemented will result in an illegal instruction exception.

Table 13.1: Control and Status Register Map
CSR Address Name Privilege Parameter Description

Machine CSRs
0x300 mstatus MRW Machine Status (lower 32 bits).
0x301 misa MRW Machine ISA
0x304 mie MRW Machine Interrupt Enable Register
0x305 mtvec MRW Machine Trap-Handler Base Address
0x307 mtvt MRW SMCLIC = 1 Machine Trap-Handler Vector Table Base Address
0x310 mstatush MRW Machine Status (upper 32 bits).
0x320 mcountinhibit MRW (HPM) Machine Counter-Inhibit Register
0x323 mhpmevent3 MRW (HPM) Machine Performance-Monitoring Event Selector 3

. . . .
0x33F mhpmevent31 MRW (HPM) Machine Performance-Monitoring Event Selector 31
0x340 mscratch MRW Machine Scratch
0x341 mepc MRW Machine Exception Program Counter
0x342 mcause MRW Machine Trap Cause
0x343 mtval MRW Machine Trap Value

continues on next page
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Table 13.1 – continued from previous page
CSR Address Name Privilege Parameter Description
0x344 mip MRW Machine Interrupt Pending Register
0x345 mnxti MRW SMCLIC = 1 Interrupt handler address and enable modifier
0x346 mintstatus MRW SMCLIC = 1 Current interrupt levels
0x347 mintthresh MRW SMCLIC = 1 Interrupt-level threshold
0x348 mscratchcsw MRW SMCLIC = 1 Conditional scratch swap on priv mode change
0x349 mscratchcswl MRW SMCLIC = 1 Conditional scratch swap on level change
0x34A mclicbase MRW SMCLIC = 1 CLIC Base Register
0x7A0 tselect MRW DBG_NUM_TRIGGERS > 0 Trigger Select Register
0x7A1 tdata1 MRW DBG_NUM_TRIGGERS > 0 Trigger Data Register 1
0x7A2 tdata2 MRW DBG_NUM_TRIGGERS > 0 Trigger Data Register 2
0x7A3 tdata3 MRW DBG_NUM_TRIGGERS > 0 Trigger Data Register 3
0x7A4 tinfo MRW DBG_NUM_TRIGGERS > 0 Trigger Info
0x7A5 tcontrol MRW DBG_NUM_TRIGGERS > 0 Trigger Control
0x7A8 mcontext MRW DBG_NUM_TRIGGERS > 0 Machine Context Register
0x7AA mscontext MRW DBG_NUM_TRIGGERS > 0 Machine Context Register
0x7B0 dcsr DRW Debug Control and Status
0x7B1 dpc DRW Debug PC
0x7B2 dscratch0 DRW Debug Scratch Register 0
0x7B3 dscratch1 DRW Debug Scratch Register 1
0xB00 mcycle MRW (HPM) Machine Cycle Counter
0xB02 minstret MRW (HPM) Machine Instructions-Retired Counter
0xB03 mhpmcounter3 MRW (HPM) Machine Performance-Monitoring Counter 3

. . . .
0xB1F mhpmcounter31 MRW (HPM) Machine Performance-Monitoring Counter 31
0xB80 mcycleh MRW (HPM) Upper 32 Machine Cycle Counter
0xB82 minstreth MRW (HPM) Upper 32 Machine Instructions-Retired Counter
0xB83 mhpmcounterh3 MRW (HPM) Upper 32 Machine Performance-Monitoring Counter 3

. . . .
0xB9F mhpmcounterh31 MRW (HPM) Upper 32 Machine Performance-Monitoring Counter 31
0xF11 mvendorid MRO Machine Vendor ID
0xF12 marchid MRO Machine Architecture ID
0xF13 mimpid MRO Machine Implementation ID
0xF14 mhartid MRO Hardware Thread ID
0xF15 mconfigptr MRO Machine Configuration Pointer

Table 13.2: Control and Status Register Map (Unprivileged and User-
Level CSRs)

CSR Address Name Privilege Parameter Description
Unprivileged and User-Level CSRs
0x017 jvt URW ZC_EXT = 1 Table jump base vector and control register

Table 13.3: Control and Status Register Map (additional CSRs for Zicntr)
CSR Address Name Privilege Parameter Description
User CSRs
0xC00 cycle URO Cycle Counter
0xC02 instret URO Instructions-Retired Counter
0xC80 cycleh URO Upper 32 Cycle Counter
0xC82 instreth URO Upper 32 Instructions-Retired Counter
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Table 13.4: Control and Status Register Map (additional CSRs for Zihpm)
CSR Ad-
dress

Name Privi-
lege

Parame-
ter

Description

User CSRs
0xC03 hpmcounter3 URO (HPM) Performance-Monitoring Counter 3
. . . . .
0xC1F hpmcounter31 URO (HPM) Performance-Monitoring Counter 31
0xC83 hpmcounterh3 URO (HPM) Upper 32 Performance-Monitoring Counter

3
. . . . .
0xC9F hpmcounterh31 URO (HPM) Upper 32 Performance-Monitoring Counter

31

13.2 CSR Descriptions

What follows is a detailed definition of each of the CSRs listed above. The R/W column defines the access mode
behavior of each bit field when accessed by the privilege level specified in Table 13.1 (or a higher privilege level):

• R: read fields are not affected by CSR write instructions. Such fields either return a fixed value, or a value
determined by the operation of the core.

• RW: read/write fields store the value written by CSR writes. Subsequent reads return either the previously
written value or a value determined by the operation of the core.

• WARL: write-any-read-legal fields store only legal values written by CSR writes. For example, a WARL (0x0)
field supports only the value 0x0. Any value may be written, but all reads would return 0x0 regardless of the
value being written to it. A WARL field may support more than one value. If an unsupported value is (attempted
to be) written to a WARL field, the original (legal) value of the bitfield is preserved.

• WPRI: Software should ignore values read from these fields, and preserve the values when writing.

Note: The R/W information does not impact whether CSR accesses result in illegal instruction exceptions or not.

13.2.1 Jump Vector Table (jvt)

CSR Address: 0x017

Reset Value: 0x0000_0000

Include Condition: ZC_EXT = 1

Detailed:

Bit # R/W Description
31: 6 RW BASE: Base Address, 64 byte aligned.
5: 0 WARL (0x0) MODE: Jump table mode

Table jump base vector and control register
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13.2.2 Machine Status (mstatus)

CSR Address: 0x300

Reset Value: defined (based on X_EXT`, X_ECS_XS)

Bit
#

R/W Description

31 R SD: State Dirty. SD = ((FS == 0x3) OR (XS == 0x3) OR (VS == 0x3)).
30:23 WPRI

(0x0)
Reserved. Hardwired to 0.

22 WARL
(0x0)

TSR. Hardwired to 0.

21 WARL
(0x0)

TW. Hardwired to 0.

20 WARL
(0x0)

TVM. Hardwired to 0.

19 R (0x0) MXR. Hardwired to 0.
18 R (0x0) SUM. Hardwired to 0.
17 R (0x0) MPRV. Hardwired to 0.
16:15 R / R (0x0) XS: Other Extension Context Status. R with reset value defined by X_ECS_XS if X_EXT == 1,

hardwired to 0 otherwise.
14:13 RW /

WARL
(0x0)

FS: FPU Extension Context Status. RW if X_EXT == 1, hardwired to 0 otherwise.

12:11 WARL
(0x3)

MPP: Machine Previous Priviledge mode. Hardwired to 0x3.

10:9 RW / WPRI
(0x0)

VS: Vector Extension Context Status. RW if X_EXT == 1, hardwired to 0 otherwise.

8 WARL
(0x0)

SPP. Hardwired to 0.

7 RW MPIE: When an exception is encountered, MPIE will be set to MIE. When the mret instruction
is executed, the value of MPIE will be stored to MIE.

6 WARL
(0x0)

UBE. Hardwired to 0.

5 R (0x0) SPIE. Hardwired to 0.
4 WPRI

(0x0)
Reserved. Hardwired to 0.

3 RW MIE: If you want to enable interrupt handling in your exception handler, set the Interrupt
Enable MIE to 1 inside your handler code.

2 WPRI
(0x0)

Reserved. Hardwired to 0.

1 R (0x0) SIE. Hardwired to 0.
0 WPRI

(0x0)
Reserved. Hardwired to 0
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13.2.3 Machine ISA (misa)

CSR Address: 0x301

Reset Value: defined (based on RV32, A_EXT, M_EXT, X_EXT, X_MISA)

Detailed:

Bit # R/W Description
31:30 WARL (0x1) MXL (Machine XLEN).
29:26 WARL (0x0) (Reserved).
25 WARL (0x0) Z (Reserved).
24 WARL (0x0) Y (Reserved).
23 WARL X (Non-standard extensions present).
22 WARL (0x0) W (Reserved).
21 WARL V (Tentatively reserved for Vector extension).
20 WARL (0x0) U (User mode implemented).
19 WARL (0x0) T (Tentatively reserved for Transactional Memory extension).
18 WARL (0x0) S (Supervisor mode implemented).
17 WARL (0x0) R (Reserved).
16 WARL Q (Quad-precision floating-point extension).
15 WARL P (Packed-SIMD extension).
14 WARL (0x0) O (Reserved).
13 WARL (0x0) N
12 WARL M (Integer Multiply/Divide extension).
11 WARL (0x0) L (Tentatively reserved for Decimal Floating-Point extension).
10 WARL (0x0) K (Reserved).
9 WARL (0x0) J (Tentatively reserved for Dynamically Translated Languages extension).
8 WARL I (RV32I/64I/128I base ISA).
7 WARL (0x0) H (Hypervisor extension).
6 WARL (0x0) G (Additional standard extensions present).
5 WARL F (Single-precision floating-point extension).
4 WARL E (RV32E base ISA).
3 WARL D (Double-precision floating-point extension).
2 WARL (0x1) C (Compressed extension).
1 WARL (0x0) B Reserved.
0 WARL A (Atomic extension).

All bitfields in the misa CSR read as 0 except for the following:

• A = 1 if A_EXT == 1

• C = 1

• I = 1 if RV32 == RV32I

• E = 1 if RV32 == RV32E

• M = 1 if M_EXT == M

• MXL = 1 (i.e. XLEN = 32)

• If X_EXT == 1, then the value of X_MISA is ORed into the misa CSR.

Note: The WARL `` in above table is depending on `X_EXT. If X_EXT == 1, then some of the misa bits can
read values depending on the value of X_MISA.
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13.2.4 Machine Interrupt Enable Register (mie) - SMCLIC == 0

CSR Address: 0x304

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:16 RW Machine Fast Interrupt Enables: Set bit x to enable interrupt irq_i[x].
15:12 WARL (0x0) Reserved. Hardwired to 0.
11 RW MEIE: Machine External Interrupt Enable, if set, irq_i[11] is enabled.
10 WARL (0x0) Reserved. Hardwired to 0.
9 WARL (0x0) SEIE. Hardwired to 0
8 WARL (0x0) Reserved. Hardwired to 0.
7 RW MTIE: Machine Timer Interrupt Enable, if set, irq_i[7] is enabled.
6 WARL (0x0) Reserved. Hardwired to 0.
5 WARL (0x0) STIE. Hardwired to 0.
4 WARL (0x0) Reserved. Hardwired to 0.
3 RW MSIE: Machine Software Interrupt Enable, if set, irq_i[3] is enabled.
2 WARL (0x0) Reserved. Hardwired to 0.
1 WARL (0x0) SSIE. Hardwired to 0.
0 WARL (0x0) Reserved. Hardwired to 0.

13.2.5 Machine Interrupt Enable Register (mie) - SMCLIC == 1

CSR Address: 0x304

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Reserved. Hardwired to 0.

Note: In CLIC mode the mie CSR is replaced by separate memory-mapped interrupt enables (clicintie).

13.2.6 Machine Trap-Vector Base Address (mtvec) - SMCLIC == 0

CSR Address: 0x305

Reset Value: Defined

Detailed:

Bit
#

R/W Description

31:7 RW BASE[31:7]: Trap-handler base address, always aligned to 128 bytes.
6:2 WARL (0x0) BASE[6:2]: Trap-handler base address, always aligned to 128 bytes. mtvec[6:2] is

hardwired to 0x0.
1:0 WARL (0x0,

0x1)
MODE[0]: Interrupt handling mode. 0x0 = non-vectored basic mode, 0x1 = vectored
basic mode.
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The initial value of mtvec is equal to {mtvec_addr_i[31:7], 5’b0, 2’b01}.

When an exception or an interrupt is encountered, the core jumps to the corresponding handler using the content of the
mtvec[31:7] as base address. Both direct mode and vectored mode are supported.

The NMI vector location is at index 15 of the machine trap vector table for both direct mode and vectored mode (i.e.
at {mtvec[31:7], 5’hF, 2’b00}).

13.2.7 Machine Trap-Vector Base Address (mtvec) - SMCLIC == 1

CSR Address: 0x305

Reset Value: Defined

Detailed:

Bit
#

R/W Description

31:7 RW BASE[31:7]: Trap-handler base address, always aligned to 128 bytes.
6:2 WARL

(0x0)
BASE[6:2]: Trap-handler base address, always aligned to 128 bytes. mtvec[6:2] is hard-
wired to 0x0.

1:0 WARL
(0x3)

MODE: Interrupt handling mode. Always CLIC mode.

The initial value of mtvec is equal to {mtvec_addr_i[31:7], 5’b0, 2’b11}.

13.2.8 Machine Trap Vector Table Base Address (mtvt)

CSR Address: 0x307

Reset Value: 0x0000_0000

Include Condition: SMCLIC = 1

Detailed:

Bit
#

R/W Description

31:N RW BASE[31:N]: Trap-handler vector table base address. N = maximum(6, 2+SMCLIC_ID_WIDTH).
See note below for alignment restrictions.

N-
1:6

WARL
(0x0)

BASE[N-1:6]: Trap-handler vector table base address. This field is only defined if N > 6. N =
maximum(6, 2+SMCLIC_ID_WIDTH). mtvt[N-1:6] is hardwired to 0x0. See note below for
alignment restrictions.

5:0 R
(0x0)

Reserved. Hardwired to 0.

Note: The mtvt CSR holds the base address of the trap vector table, which has its alignment restricted to
both at least 64-bytes and to 2^(2+SMCLIC_ID_WIDTH) bytes or greater power-of-two boundary. For example if
SMCLIC_ID_WIDTH = 8, then 256 CLIC interrupts are supported and the trap vector table is aligned to 1024 bytes,
and therefore BASE[9:6] will be WARL (0x0).
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13.2.9 Machine Status (mstatush)

CSR Address: 0x310

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31:6 WPRI (0x0) Reserved. Hardwired to 0.
5 WARL (0x0) MBE. Hardwired to 0.
4 WARL (0x0) SBE. Hardwired to 0.
3:0 WPRI (0x0) Reserved. Hardwired to 0.

13.2.10 Machine Counter-Inhibit Register (mcountinhibit)

CSR Address: 0x320

Reset Value: Defined

The performance counter inhibit control register. The default value is to inihibit all implemented counters out of reset.
The bit returns a read value of 0 for non implemented counters.

Detailed:

Bit# R/W Description
31:3 WARL mhpmcounter3 - mhpmcounter31 inhibits. Depends on NUM_MHPMCOUNTERS (i.e. bits related

to non-implemented counters always read as 0).
2 WARL IR: minstret inhibit
1 WARL

(0x0)
Hardwired to 0.

0 WARL CY: mcycle inhibit

13.2.11 Machine Performance Monitoring Event Selector (mhpmevent3 ..
mhpmevent31)

CSR Address: 0x323 - 0x33F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31:16 WARL (0x0) Hardwired to 0.
15:0 WARL SELECTORS: Each bit represents a unique event to count.

The event selector fields are further described in Performance Counters section. Non implemented counters always
return a read value of 0.

52 Chapter 13. Control and Status Registers



CORE-V-Docs Documentation

13.2.12 Machine Scratch (mscratch)

CSR Address: 0x340

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 RW Scratch value

13.2.13 Machine Exception PC (mepc)

CSR Address: 0x341

Reset Value: 0x0000_0000

Bit # R/W Description
31:1 WARL Machine Expection Program Counter 31:1
0 WARL (0x0) Hardwired to 0.

When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception
address. When a mret instruction is executed, the value from MEPC replaces the current program counter.

13.2.14 Machine Cause (mcause) - SMCLIC == 0

CSR Address: 0x342

Reset Value: 0x0000_0000

Bit # R/W Description
31 RW INTERRUPT: This bit is set when the exception was triggered by an interrupt.
30:11 WLRL (0x0) EXCCODE[30:11]. Hardwired to 0.
10:0 WLRL EXCCODE[10:0]. See note below.

Note: Software accesses to mcause[10:0] must be sensitive to the WLRL field specification of this CSR. For example,
when mcause[31] is set, writing 0x1 to mcause[1] (Supervisor software interrupt) will result in UNDEFINED behavior.

13.2.15 Machine Cause (mcause) - SMCLIC == 1

CSR Address: 0x342

Reset Value: 0x0000_0000
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Bit
#

R/W Description

31 RW INTERRUPT: This bit is set when the exception was triggered by an interrupt.
30 R MINHV. Set by hardware at start of hardware vectoring, cleared by hardware at end of suc-

cessful hardware vectoring.
29:28 WARL

(0x3)
MPP: Previous privilege mode. Same as mstatus.MPP

27 RW MPIE: Previous interrupt enable. Same as mstatus.MPIE
26:24 RW Reserved. Hardwired to 0.
23:16 RW MPIL: Previous interrupt level.
15:12 WARL

(0x0)
Reserved. Hardwired to 0.

11 WLRL
(0x0)

EXCCODE[11]

10:0 WLRL EXCCODE[10:0]

Note: mcause.MPP and mstatus.MPP mirror each other. mcause.MPIE and mstatus.MPIE mirror each other.
Reading or writing the fields MPP/MPIE in mcause is equivalent to reading or writing the homonymous field in mstatus.

13.2.16 Machine Trap Value (mtval)

CSR Address: 0x343

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Hardwired to 0.

13.2.17 Machine Interrupt Pending Register (mip) - SMCLIC == 0

CSR Address: 0x344

Reset Value: 0x0000_0000

Detailed:
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Bit # R/W Description
31:16 R Machine Fast Interrupt Enables: Interrupt irq_i[x] is pending.
15:12 WARL (0x0) Reserved. Hardwired to 0.
11 R MEIP: Machine External Interrupt Enable, if set, irq_i[11] is pending.
10 WARL (0x0) Reserved. Hardwired to 0.
9 WARL (0x0) SEIP. Hardwired to 0
8 WARL (0x0) Reserved. Hardwired to 0.
7 R MTIP: Machine Timer Interrupt Enable, if set, irq_i[7] is pending.
6 WARL (0x0) Reserved. Hardwired to 0.
5 WARL (0x0) STIP. Hardwired to 0.
4 WARL (0x0) Reserved. Hardwired to 0.
3 R MSIP: Machine Software Interrupt Enable, if set, irq_i[3] is pending.
2 WARL (0x0) Reserved. Hardwired to 0.
1 WARL (0x0) SSIP. Hardwired to 0.
0 WARL (0x0) Reserved. Hardwired to 0.

13.2.18 Machine Interrupt Pending Register (mip) - SMCLIC == 1

CSR Address: 0x344

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 WARL (0x0) Reserved. Hardwired to 0.

Note: In CLIC mode the mip CSR is replaced by separate memory-mapped interrupt enables (clicintip).

13.2.19 Machine Next Interrupt Handler Address and Interrupt Enable (mnxti)

CSR Address: 0x345

Reset Value: 0x0000_0000

Include Condition: SMCLIC = 1

Detailed:

Bit # R/W Description
31:0 RW MNXTI: Machine Next Interrupt Handler Address and Interrupt Enable.

This register can be used by the software to service the next interrupt when it is in the same privilege mode, without
incurring the full cost of an interrupt pipeline flush and context save/restore.
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13.2.20 Machine Interrupt Status (mintstatus)

CSR Address: 0x346

Reset Value: 0x0000_0000

Include Condition: SMCLIC = 1

Detailed:

Bit # R/W Description
31:24 R MIL: Machine Interrupt Level
23:16 R (0x0) Reserved. Hardwired to 0.
15: 8 R (0x0) SIL: Supervisor Interrupt Level, hardwired to 0.
7: 0 R (0x0) UIL: User Interrupt Level, hardwired to 0.

This register holds the active interrupt level for each privilege mode. Only Machine Interrupt Level is supported.

13.2.21 Machine Interrupt-Level Threshold (mintthresh)

CSR Address: 0x347

Reset Value: 0x0000_0000

Include Condition: SMCLIC = 1

Detailed:

Bit # R/W Description
31: 8 R (0x0) Reserved. Hardwired to 0.
7: 0 RW TH: Threshold

This register holds the machine mode interrupt level threshold.

13.2.22 Machine Scratch Swap for Priv Mode Change (mscratchcsw)

CSR Address: 0x348

Reset Value: 0x0000_0000

Include Condition: SMCLIC = 1

Detailed:

Bit # R/W Description
31:0 RW MSCRATCHCSW: Machine scratch swap for privilege mode change

Scratch swap register for multiple privilege modes.
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13.2.23 Machine Scratch Swap for Interrupt-Level Change (mscratchcswl)

CSR Address: 0x349

Reset Value: 0x0000_0000

Include Condition: SMCLIC = 1

Detailed:

Bit # R/W Description
31:0 RW MSCRATCHCSWL: Machine Scratch Swap for Interrupt-Level Change

Scratch swap register for multiple interrupt levels.

13.2.24 CLIC Base (mclicbase)

CSR Address: 0x34A

Reset Value: 0x0000_0000

Include Condition: SMCLIC = 1

Detailed:

Bit # R/W Description
31:12 RW MCLICBASE: CLIC Base
11: 0 R (0x0) Reserved. Hardwired to 0.

CLIC base register.

13.2.25 Trigger Select Register (tselect)

CSR Address: 0x7A0

Reset Value: 0x0000_0000

Bit # R/W Description

31:0 WARL
(0x0 - (DBG_NUM_TRIGGERS-1))

CV32E40X implements 0 to
DBG_NUM_TRIGGERS triggers.
Selects
which trigger CSRs are accessed
through the tdata* CSRs.
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13.2.26 Trigger Data 1 (tdata1)

CSR Address: 0x7A1

Reset Value: 0x6800_1044

Accessible in Debug Mode or M-Mode, depending on TDATA1.dmode. The contents of the data field depends on
the current value of the type field. See [RISC-V-DEBUG] for details regarding all trigger related CSRs.

Bit# R/W Description

31:28 WARL
(0x5, 0x6)

type: 6 = Address match trigger
type.

5 = Exception trigger

27 WARL (0x1) dmode: Only debug mode can write
tdata registers

26:0 WARL data: Trigger data depending on
type

13.2.27 Match Control Type 6 (mcontrol6)

CSR Address: 0x7A1

Reset Value: 0x6800_1044

Accessible in Debug Mode or M-Mode, depending on TDATA1.DMODE.
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Bit# R/W Description
31:28 WARL (0x6) TYPE: 6 = Address match trigger.
27 WARL (0x1) DMODE: Only debug mode can

write tdata registers
26:25 WARL (0x0) Hardwired to 0.
24 WARL (0x0) VS:. Hardwired to 0.
23 WARL (0x0) VU:. Hardwired to 0.
22 WARL (0x0) HIT:. Hardwired to 0.
21 WARL (0x0) SELECT: Only address matching is

supported.

20 WARL (0x0) TIMING: Break before the
instruction at the specified
address.

19:16 WARL (0x0) SIZE: Match accesses of any size.
15:12 WARL (0x1) ACTION: Enter debug mode on

match.
11 WARL (0x0) CHAIN:. Hardwired to 0

10:7 WARL
(0x0, 0x2,

0x3)

MATCH: 0: Address matches
tdata2.

2: Address is greater than or
equal to tdata2
3: Address is less than tdata2

6 WARL (0x1) M: Match in M-Mode.
5 WARL (0x0) Hardwired to 0.
4 WARL (0x0) S:. Hardwired to 0.
3 WARL (0x0) U:. Hardwired to 0.
2 WARL EXECUTE: Enable matching on

instruction address.
1 WARL STORE: Enable matching on store

address.
0 WARL LOAD: Enable matching on load

address.

13.2.28 Exception Trigger (etrigger)

CSR Address: 0x7A1

Reset Value: 0x5800_0201

Accessible in Debug Mode or M-Mode, depending on TDATA1.DMODE.
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Bit# R/W Description
31:28 WARL (0x5) TYPE: 5 = Exception trigger.
27 WARL (0x1) DMODE: Only debug mode can write tdata registers
26 WARL (0x0) HIT:. Hardwired to 0.
25:13 WARL (0x0) Hardwired to 0.
12 WARL (0x0) VS:. Hardwired to 0.
11 WARL (0x0) VU:. Hardwired to 0.
10 WARL NMI: Set to enable trigger on NMI.
9 WARL (0x1) M: Match in M-Mode.
8 WARL (0x0) Hardwired to 0.
7 WARL (0x0) S:. Hardwired to 0.
6 WARL (0x0) U:. Hardwired to 0.
5:0 WARL (0x1) ACTION: Enter debug mode on match.

13.2.29 Trigger Data Register 2 (tdata2)

CSR Address: 0x7A2

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW DATA

Accessible in Debug Mode or M-Mode, depending on TDATA1.DMODE. This register stores the instruction address
to match against for a breakpoint trigger or the currently selected exception codes for an exception trigger.

13.2.30 Trigger Data Register 3 (tdata3)

CSR Address: 0x7A3

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

Accessible in Debug Mode or M-Mode. CV32E40X does not support the features requiring this register. CSR is
hardwired to 0.
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13.2.31 Trigger Info (tinfo)

CSR Address: 0x7A4

Reset Value: 0x0000_0060

Detailed:

Bit# R/W Description
31:16 WARL (0x0) Hardwired to 0.
15:0

R (0x20, 0x40)
INFO. Type 5 and 6 is supported.

The info field contains one bit for each possible type enumerated in tdata1. Bit N corresponds to type N. If the bit is
set, then that type is supported by the currently selected trigger. If the currently selected trigger does not exist, this field
contains 1.

Accessible in Debug Mode or M-Mode.

13.2.32 Trigger Control (tcontrol)

CSR Address: 0x7A5

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:8 WARL (0x0) Hardwired to 0.
7 WARL (0x0) MPTE. Hardwired to 0.
6:4 WARL (0x0) Hardwired to 0.
3 WARL (0x0) MTE. Hardwired to 0.
2:0 WARL (0x0) Hardwired to 0.

CV32E40X does not support the features requiring this register. CSR is hardwired to 0.

13.2.33 Machine Context Register (mcontext)

CSR Address: 0x7A8

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

Accessible in Debug Mode or M-Mode. CV32E40X does not support the features requiring this register. CSR is
hardwired to 0.
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13.2.34 Machine Supervisor Context Register (mscontext)

CSR Address: 0x7AA

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 WARL (0x0) Hardwired to 0.

Accessible in Debug Mode or M-Mode. CV32E40X does not support the features requiring this register. CSR is
hardwired to 0.

13.2.35 Debug Control and Status (dcsr)

CSR Address: 0x7B0

Reset Value: 0x4000_0003

Detailed:

Bit # R/W Description
31:28 R (0x4) XDEBUGVER: returns 4 - External debug support exists as it is described in

[RISC-V-DEBUG].
27:18 WARL

(0x0)
Reserved

17 WARL
(0x0)

EBREAKVS. Hardwired to 0

16 WARL
(0x0)

EBREAKVU. Hardwired to 0.

15 RW EBREAKM: Set to enter debug mode on ebreak.
14 WARL

(0x0)
Hardwired to 0.

13 WARL
(0x0)

EBREAKS. Hardwired to 0.

12 WARL
(0x0)

EBREAKU. Hardwired to 0.

11 WARL STEPIE: Set to enable interrupts during single stepping.
10 WARL

(0x0)
STOPCOUNT. Hardwired to 0.

9 WARL
(0x0)

STOPTIME. Hardwired to 0.

8:6 R CAUSE: Return the cause of debug entry.
5 WARL

(0x0)
V. Hardwired to 0.

4 WARL
(0x0)

MPRVEN. Hardwired to 0.

3 R NMIP. If set, an NMI is pending
2 RW STEP: Set to enable single stepping.
1:0 WARL

(0x3)
PRV: Returns the priviledge mode before debug entry.
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13.2.36 Debug PC (dpc)

CSR Address: 0x7B1

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 RW DPC. Debug PC

When the core enters in Debug Mode, DPC contains the virtual address of the next instruction to be executed.

13.2.37 Debug Scratch Register 0/1 (dscratch0/1)

CSR Address: 0x7B2/0x7B3

Reset Value: 0x0000_0000

Detailed:

Bit # R/W Description
31:0 RW DSCRATCH0/1

13.2.38 Machine Cycle Counter (mcycle)

CSR Address: 0xB00

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW The lower 32 bits of the 64 bit machine mode cycle counter.

13.2.39 Machine Instructions-Retired Counter (minstret)

CSR Address: 0xB02

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW The lower 32 bits of the 64 bit machine mode instruction retired counter.
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13.2.40 Machine Performance Monitoring Counter (mhpmcounter3 ..
mhpmcounter31)

CSR Address: 0xB03 - 0xB1F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW Machine performance-monitoring counter

The lower 32 bits of the 64 bit machine performance-monitoring counter(s). The number of machine performance-
monitoring counters is determined by the parameter NUM_MHPMCOUNTERS with a range from 0 to 29 (default value of
1). Non implemented counters always return a read value of 0.

13.2.41 Upper 32 Machine Cycle Counter (mcycleh)

CSR Address: 0xB80

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW The upper 32 bits of the 64 bit machine mode cycle counter.

13.2.42 Upper 32 Machine Instructions-Retired Counter (minstreth)

CSR Address: 0xB82

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW The upper 32 bits of the 64 bit machine mode instruction retired counter.

13.2.43 Upper 32 Machine Performance Monitoring Counter (mhpmcounter3h ..
mhpmcounter31h)

CSR Address: 0xB83 - 0xB9F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 RW Machine performance-monitoring counter

The upper 32 bits of the 64 bit machine performance-monitoring counter(s). The number of machine performance-
monitoring counters is determined by the parameter NUM_MHPMCOUNTERS with a range from 0 to 29 (default value of
1). Non implemented counters always return a read value of 0.
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13.2.44 Machine Vendor ID (mvendorid)

CSR Address: 0xF11

Reset Value: 0x0000_0602

Detailed:

Bit # R/W Description
31:7 R (0xC) Number of continuation codes in JEDEC manufacturer ID.
6:0 R (0x2) Final byte of JEDEC manufacturer ID, discarding the parity bit.

The mvendorid encodes the OpenHW JEDEC Manufacturer ID, which is 2 decimal (bank 13).

13.2.45 Machine Architecture ID (marchid)

CSR Address: 0xF12

Reset Value: 0x0000_0014

Detailed:

Bit # R/W Description
31:0 R (0x14) Machine Architecture ID of CV32E40X is 0x14 (decimal 20)

13.2.46 Machine Implementation ID (mimpid)

CSR Address: 0xF13

Reset Value: Defined

Detailed:

Bit # R/W Description
31:20 R (0x0) Hardwired to 0.
19:16 R (0x0) MAJOR.
15:12 R (0x0) Hardwired to 0.
11:8 R (0x0) MINOR.
7:4 R (0x0) Hardwired to 0.
3:0 R PATCH. mimpid_patch_i, see Core Integration

The Machine Implementation ID uses a Major, Minor, Patch versioning scheme. The PATCH bitfield is defined and
set by the integrator and shall be set to 0 when no patches are applied. It is made available as mimpid_patch_i on the
boundary of CV32E40X such that it can easily be changed by a metal layer only change.
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13.2.47 Hardware Thread ID (mhartid)

CSR Address: 0xF14

Reset Value: Defined

Bit # R/W Description
31:0 R Machine Hardware Thread ID mhartid_i, see Core Integration

13.2.48 Machine Configuration Pointer (mconfigptr)

CSR Address: 0xF15

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Definition
31:0 R (0x0) Reserved

13.2.49 Cycle Counter (cycle)

CSR Address: 0xC00

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 R

Read-only unprivileged shadow of the lower 32 bits of the 64 bit machine mode cycle counter.

13.2.50 Instructions-Retired Counter (instret)

CSR Address: 0xC02

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 R

Read-only unprivileged shadow of the lower 32 bits of the 64 bit machine mode instruction retired counter.
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13.2.51 Performance Monitoring Counter (hpmcounter3 .. hpmcounter31)

CSR Address: 0xC03 - 0xC1F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 R

Read-only unprivileged shadow of the lower 32 bits of the 64 bit machine mode performance counter. Non implemented
counters always return a read value of 0.

13.2.52 Upper 32 Cycle Counter (cycleh)

CSR Address: 0xC80

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 R

Read-only unprivileged shadow of the upper 32 bits of the 64 bit machine mode cycle counter.

13.2.53 Upper 32 Instructions-Retired Counter (instreth)

CSR Address: 0xC82

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 R

Read-only unprivileged shadow of the upper 32 bits of the 64 bit machine mode instruction retired counter.

13.2.54 Upper 32 Performance Monitoring Counter (hpmcounter3h ..
hpmcounter31h)

CSR Address: 0xC83 - 0xC9F

Reset Value: 0x0000_0000

Detailed:

Bit# R/W Description
31:0 R

Read-only unprivileged shadow of the upper 32 bits of the 64 bit machine mode performance counter. Non implemented
counters always return a read value of 0.
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PERFORMANCE COUNTERS

CV32E40X implements performance counters according to [RISC-V-PRIV]. The performance counters are placed
inside the Control and Status Registers (CSRs) and can be accessed with the CSRRW(I) and CSRRS/C(I) instructions.

CV32E40X implements the clock cycle counter mcycle(h), the retired instruction counter minstret(h), as well as
the parameterizable number of event counters mhpmcounter3(h) - mhpmcounter31(h) and the corresponding event
selector CSRs mhpmevent3 - mhpmevent31, and the mcountinhibitCSR to individually enable/disable the counters.
mcycle(h) and minstret(h) are always available.

All counters are 64 bit wide.

The number of event counters is determined by the parameter NUM_MHPMCOUNTERS with a range from 0 to 29 (default
value of 1).

Unimplemented counters always read 0.

Note: All performance counters are using the gated version of clk_i. The wfi instruction impact the gating of clk_i
as explained in Sleep Unit and can therefore affect the counters.

14.1 Event Selector

The following events can be monitored using the performance counters of CV32E40X.

Bit # Event Name
0 CYCLES Number of cycles
1 INSTR Number of instructions retired
2 COMP_INSTR Number of compressed instructions retired
3 JUMP Number of jumps (unconditional)
4 BRANCH Number of branches (conditional)
5 BRANCH_TAKEN Number of branches taken (conditional)
6 INTR_TAKEN Number of taken interrupts (excluding NMI)
7 DATA_READ Number of read transactions on the OBI data interface.
8 DATA_WRITE Number of write transactions on the OBI data interface.
9 IF_INVALID Number of cycles that the IF stage causes ID stage underutilization
10 ID_INVALID Number of cycles that the ID stage causes EX stage underutilization
11 EX_INVALID Number of cycles that the EX stage causes WB stage underutilization
12 WB_INVALID Number of cycles that the WB stage causes register file write port underutilization
13 LD_STALL Number of stall cycles caused by load use hazards
14 JMP_STALL Number of stall cycles caused by jump register hazards
15 WB_DATA_STALL Number of stall cycles caused in the WB stage by loads/stores.
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The event selector CSRs mhpmevent3 - mhpmevent31 define which of these events are counted by the event counters
mhpmcounter3(h) - mhpmcounter31(h). If a specific bit in an event selector CSR is set to 1, this means that events
with this ID are being counted by the counter associated with that selector CSR. If an event selector CSR is 0, this
means that the corresponding counter is not counting any event.

Note: At most 1 bit should be set in an event selector. If multiple bits are set in an event selector, then the operation
of the associated counter is undefined.

14.2 Controlling the counters from software

By default, all available counters are disabled after reset in order to provide the lowest power consumption.

They can be individually enabled/disabled by overwriting the corresponding bit in the mcountinhibit CSR at ad-
dress 0x320 as described in [RISC-V-PRIV]. In particular, to enable/disable mcycle(h), bit 0 must be written. For
minstret(h), it is bit 2. For event counter mhpmcounterX(h), it is bit X.

The lower 32 bits of all counters can be accessed through the base register, whereas the upper 32 bits are accessed
through the h-register. Reads of all these registers are non-destructive.

14.3 Parametrization at synthesis time

The mcycle(h) and minstret(h) counters are always available and 64 bit wide.

The number of available event counters mhpmcounterX(h) can be controlled via the NUM_MHPMCOUNTERS parameter.
By default NUM_MHPCOUNTERS set to 1.

An increment of 1 to the NUM_MHPCOUNTERS results in the addition of the following:

• 64 flops for mhpmcounterX

• 15 flops for mhpmeventX

• 1 flop for mcountinhibit[X]

• Adder and event enablement logic

14.4 Time Registers (time(h))

The user mode time(h) registers are not implemented. Any access to these registers will cause an illegal instruction
trap. It is recommended that a software trap handler is implemented to detect access of these CSRs and convert that
into access of the platform-defined mtime register (if implemented in the platform).
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EXCEPTIONS AND INTERRUPTS

CV32E40X supports one of two interrupt architectures. If the SMCLIC parameter is set to 0, then the basic interrupt
architecture is supported (see Basic Interrupt Architecture). If the SMCLIC parameter is set to 1, then the CLIC interrupt
architecture is supported (see CLIC Interrupt Architecture).

15.1 Basic Interrupt Architecture

If SMCLIC == 0, then CV32E40X supports the basic interrupt architecture as defined in [RISC-V-PRIV]. In this
configuration only the basic interrupt handling modes (non-vectored basic mode and vectored basic mode) can be
used. The irq_i[31:16] interrupts are a custom extension that can be used with the basic interrupt architecture.

When entering an interrupt/exception handler, the core sets the mepc CSR to the current program counter and saves
mstatus.MIE to mstatus.MPIE. All exceptions cause the core to jump to the base address of the vector table in the
mtvec CSR. Interrupts are handled in either non-vectored basic mode or vectored basic mode depending on the value
of mtvec.MODE. In non-vectored basic mode the core jumps to the base address of the vector table in the mtvec CSR.
In vectored basic mode the core jumps to the base address plus four times the interrupt ID. Upon executing an MRET
instruction, the core jumps to the program counter previously saved in the mepc CSR and restores mstatus.MPIE to
mstatus.MIE.

The base address of the vector table must be aligned to 128 bytes and can be programmed by writing to the mtvec CSR
(see Machine Trap-Vector Base Address (mtvec) - SMCLIC == 0).
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15.1.1 Interrupt Interface

Table 15.1 describes the interrupt interface used for the basic interrupt architecture.

Table 15.1: Basic interrupt architecture interface signals
Signal Di-

rec-
tion

Description

irq_i[31:16]input Active high, level sensistive interrupt inputs. Custom extension.
irq_i[15:12]input Reserved. Tie to 0.
irq_i[11] input Active high, level sensistive interrupt input. Referred to as Machine External Interrupt (MEI),

but integrator can assign a different purpose if desired.
irq_i[10:8]input Reserved. Tie to 0.
irq_i[7] input Active high, level sensistive interrupt input. Referred to as Machine Timer Interrupt (MTI),

but integrator can assign a different purpose if desired.
irq_i[6:4]input Reserved. Tie to 0.
irq_i[3] input Active high, level sensistive interrupt input. Referred to as Machine Software Interrupt (MSI),

but integrator can assign a different purpose if desired.
irq_i[2:0]input Reserved. Tie to 0.

Note: The clic_*_i pins are ignored in basic mode and should be tied to 0.

15.1.2 Interrupts

The irq_i[31:0] interrupts are controlled via the mstatus, mie and mip CSRs. CV32E40X uses the upper 16 bits
of mie and mip for custom interrupts (irq_i[31:16]), which reflects an intended custom extension in the RISC-V
basic (a.k.a. CLINT) interrupt architecture. After reset, all interrupts, except for NMIs, are disabled. To enable any
of the irq_i[31:0] interrupts, both the global interrupt enable (MIE) bit in the mstatus CSR and the corresponding
individual interrupt enable bit in the mieCSR need to be set. For more information, see the Control and Status Registers
documentation.

If multiple interrupts are pending, they are handled in the fixed priority order defined by [RISC-V-PRIV]. The highest
priority is given to the interrupt with the highest ID, except for the Machine Timer Interrupt, which has the lowest
priority. So from high to low priority the interrupts are ordered as follows:

• store bus fault NMI (1025)

• load bus fault NMI (1024)

• irq_i[31]

• irq_i[30]

• . . .

• irq_i[16]

• irq_i[11]

• irq_i[3]

• irq_i[7]

The irq_i[31:0] interrupt lines are level-sensitive. The NMIs are triggered by load/store bus fault events. To clear
the irq_i[31:0] interrupts at the external source, CV32E40X relies on a software-based mechanism in which the
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interrupt handler signals completion of the handling routine to the interrupt source, e.g., through a memory-mapped
register, which then deasserts the corresponding interrupt line.

In Debug Mode, all interrupts are ignored independent of mstatus.MIE and the content of the mie CSR.

CV32E40X can trigger the following interrupts as reported in mcause:

Inter-
rupt

Exception
Code

Description Scenario(s)

1 3 Machine Software Interrupt
(MSI)

irq_i[3]

1 7 Machine Timer Interrupt
(MTI)

irq_i[7]

1 11 Machine External Interrupt
(MEI)

irq_i[11]

1 31-16 Machine Fast Interrupts irq_i[31]-irq_i[16]
1 1024 Load bus fault NMI (impre-

cise)
data_err_i = 1 and data_rvalid_i = 1
for load

1 1025 Store bus fault NMI (impre-
cise)

data_err_i = 1 and data_rvalid_i = 1
for store

Note: Load bus fault and store bus fault are handled as imprecise non-maskable interrupts (as opposed to precise
exceptions).

Note: The NMI vector location is at index 15 of the machine trap vector table for both non-vectored basic mode
and vectored basic mode (i.e. at {mtvec[31:7], 5’hF, 2’b00}). The NMI vector location therefore does not match its
exception code.

15.1.3 Nested Interrupt Handling

Within the basic interrupt architecture there is no hardware support for nested interrupt handling. Nested interrupt
handling can however still be supported via software.

The hardware automatically disables interrupts upon entering an interrupt/exception handler. Otherwise, interrupts
during the critical part of the handler, i.e. before software has saved the mepc and mstatus CSRs, would cause those
CSRs to be overwritten. If desired, software can explicitly enable interrupts by setting mstatus.MIE to 1 from within
the handler. However, software should only do this after saving mepc and mstatus. There is no limit on the maximum
number of nested interrupts. Note that, after enabling interrupts by setting mstatus.MIE to 1, the current handler will
be interrupted also by lower priority interrupts. To allow higher priority interrupts only, the handler must configure
mie accordingly.
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15.2 CLIC Interrupt Architecture

If SMCLIC == 1, then CV32E40X supports the Core-Local Interrupt Controller (CLIC) Privileged Architecture Ex-
tension defined in [RISC-V-SMCLIC]. In this configuration only the CLIC interrupt handling mode can be used (i.e.
mtvec[1:0] = 0x3).

The CLIC implementation is split into a part internal to the core (containing CSRs and related logic) and a part external
to the core (containing memory mapped registers and arbitration logic). CV32E40X only provides the core internal part
of CLIC. The external part can be added on the interface described in Interrupt Interface. CLIC provides low-latency,
vectored, pre-emptive interrupts.

15.2.1 Interrupt Interface

Table 15.2 describes the interrupt interface used for the CLIC interrupt architecture.

Table 15.2: CLIC interrupt architecture interface signals
Signal Direc-

tion
Description

clic_irq_i input Is there any pending-and-enabled interrupt?
clic_irq_id_i[SMCLIC_ID_WIDTH-1:0]input Index of the most urgent pending-and-enabled interrupt.
clic_irq_level_i[7:0] input Interrupt level of the most urgent pending-and-enabled interrupt.
clic_irq_priv_i[1:0] input Associated privilege mode of the most urgent pending-and-enabled

interrupt.
clic_irq_shv_i input Selective hardware vectoring enabled for the most urgent pending-

and-enabled interrupt?

The term pending-and-enabled interrupt in above table refers to pending-and-locally-enabled, i.e. based on the
CLICINTIP and CLICINTIE memory mapped registers from [RISC-V-SMCLIC].

Note: Edge triggered interrupts are not supported.

Note: The irq_i[31:0] pins are ignored in CLIC mode and should be tied to 0.

15.2.2 Interrupts

Although the [RISC-V-SMCLIC] specification supports up to 4096 interrupts, CV32E40X itself supports at most 1024
interrupts. The maximum number of supported CLIC interrupts is equal to 2^SMCLIC_ID_WIDTH, which can range
from 2 to 1024. The SMCLIC_ID_WIDTH parameter also impacts the alignment requirement for the trap vector table,
see Machine Trap Vector Table Base Address (mtvt).
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15.2.3 Nested Interrupt Handling

CV32E40X offers hardware support for nested interrupt handling when SMCLIC == 1.

CLIC extends interrupt preemption to support up to 256 interrupt levels for each privilege mode, where higher-
numbered interrupt levels can preempt lower-numbered interrupt levels. See [RISC-V-SMCLIC] for details.

15.3 Non Maskable Interrupts

Non Maskable Interrupts (NMIs) update mepc, mcause and mstatus similar to regular interrupts. However, as the
faults that result in NMIs are imprecise, the contents of mepc is not guaranteed to point to the instruction after the
faulted load or store.

Note: Specifically mstatus.mie will get cleared to 0 when an (unrecoverable) NMI is taken. [RISC-V-PRIV] does
not specify the behavior of mstatus in response to NMIs, see https://github.com/riscv/riscv-isa-manual/issues/756.
If this behavior is specified at a future date, then we will reconsider our implementation.

The NMI vector location is at index 15 of the machine trap vector table for non-vectored basic mode, vectored basic
mode and CLIC mode (i.e. {mtvec[31:7], 5’hF, 2’b00}).

An NMI will occur when a load or store instruction experiences a bus fault. The fault resulting in an NMI is handled
in an imprecise manner, meaning that the instruction that causes the fault is allowed to retire and the associated NMI
is taken afterwards. NMIs are never masked by the MIE bit. NMIs are masked however while in debug mode or while
single stepping with STEPIE = 0 in the dcsr CSR. This means that many instructions may retire before the NMI is
visible to the core if debugging is taking place. Once the NMI is visible to the core, at most two instructions will retire
before the NMI is taken.

If an NMI becomes pending while in debug mode as described above, the NMI will be taken immediately after debug
mode has been exited.

In case of bufferable stores, the NMI is allowed to become visible an arbitrary time after the instruction retirement. As
for the case with debugging, this can cause several instructions to retire before the NMI becomes visible to the core.

When a data bus fault occurs, the first detected fault will be latched and used for mcause when the NMI is taken. Any
new data bus faults occuring while an NMI is pending will be discarded. When the NMI handler is entered, new data
bus faults may be latched.

While an NMI is pending, DCSR.nmip will be 1. Note that this CSR is only accessible from debug mode, and is thus
not visible for machine mode code.

15.4 Exceptions

CV32E40X can trigger the following exceptions as reported in mcause:
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In-
ter-
rupt

Ex-
cep-
tion
Code

Description Scenario(s)

0 1 Instruction
access fault

Execution attempt from I/O region.

0 2 Illegal instruc-
tion

0 3 Breakpoint Environment break.
0 5 Load access fault Non-naturally aligned load access attempt to an I/O region. Load-

Reserved attempt to region without atomic support.
0 7 Store/AMO

access fault
Non-naturally aligned store access attempt to an I/O region. Store-
Conditional or Atomic Memory Operation (AMO) attempt to re-
gion without atomic support.

0 11 Environment call
from M-Mode
(ECALL)

0 48 Instruction bus
fault

instr_err_i = 1 and instr_rvalid_i = 1 for instruction fetch

If an instruction raises multiple exceptions, the priority, from high to low, is as follows:

• instruction access fault (1)

• instruction bus fault (48)

• illegal instruction (2)

• environment call from M-Mode (11)

• environment break (3)

• store/AMO access fault (7)

• load access fault (5)

Exceptions in general cannot be disabled and are always active. All exceptions are precise. Whether the PMA will
actually cause exceptions depends on its configuration. CV32E40X raises an illegal instruction exception for any
instruction in the RISC-V privileged and unprivileged specifications that is explicitly defined as being illegal according
to the ISA implemented by the core, as well as for any instruction that is left undefined in these specifications unless
the instruction encoding is configured as a custom CV32E40X instruction for specific parameter settings as defined
in (see CORE-V Instruction Set Extensions). An instruction bus error leads to a precise instruction interface bus fault
if an attempt is made to execute the instruction that has an associated bus error. Similarly an instruction fetch with a
failing PMA check only leads to an instruction access exception if an actual execution attempt is made for it.
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CV32E40X offers support for execution-based debug according to [RISC-V-DEBUG]. The main requirements for the
core are described in Chapter 4: RISC-V Debug, Chapter 5: Trigger Module, and Appendix A.2: Execution Based.

The following list shows the simplified overview of events that occur in the core when debug is requested:

1. Enters Debug Mode

2. Saves the PC to DPC

3. Updates the cause in the DCSR

4. Points the PC to the location determined by the input port dm_haltaddr_i

5. Begins executing debug control code.

Debug Mode can be entered by one of the following conditions:

• External debug event using the debug_req_i signal

• Trigger Module match event with TDATA1.action set to 1

• ebreak instruction when not in Debug Mode and when DCSR.EBREAKM == 1 (see EBREAK Behavior below)

A user wishing to perform an abstract access, whereby the user can observe or control a core’s GPR or CSR register
from the hart, is done by invoking debug control code to move values to and from internal registers to an externally
addressable Debug Module (DM). Using this execution-based debug allows for the reduction of the overall number of
debug interface signals.

Note: Debug support in CV32E40X is only one of the components needed to build a System on Chip design with
run-control debug support (think “the ability to attach GDB to a core over JTAG”). Additionally, a Debug Module and
a Debug Transport Module, compliant with the RISC-V Debug Specification, are needed.

A supported open source implementation of these building blocks can be found in the RISC-V Debug Support for
PULP Cores IP block.

The CV32E40X also supports a Trigger Module to enable entry into Debug Mode on a trigger event with the following
features:

• Number of trigger register(s) : Parametrizable 0-4 triggers using parameter DBG_NUM_TRIGGERS.

• Supported trigger types: instruction address match (Match Control) and exception trigger.

A trigger match will cause debug entry if TDATA1.action is 1.

The CV32E40X will not support the optional debug features 10, 11, & 12 listed in Section 4.1 of [RISC-V-DEBUG].
Specifically, a control transfer instruction’s destination location being in or out of the Program Buffer and instructions
depending on PC value shall not cause an illegal instruction.
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16.1 Interface

Signal Direction Description
debug_req_i input Request to enter Debug Mode
debug_havereset_o output Debug status: Core has been reset
debug_running_o output Debug status: Core is running
debug_halted_o output Debug status: Core is halted
dm_halt_addr_i[31:0] input Address for debugger entry
dm_exception_addr_i[31:0] input Address for debugger exception entry

debug_req_i is the “debug interrupt”, issued by the debug module when the core should enter Debug Mode. The
debug_req_i is synchronous to clk_i and requires a minimum assertion of one clock period to enter Debug Mode.
The instruction being decoded during the same cycle that debug_req_i is first asserted shall not be executed before
entering Debug Mode.

debug_havereset_o, debug_running_o, and debug_mode_o signals provide the operational status of the core to
the debug module. The assertion of these signals is mutually exclusive.

debug_havereset_o is used to signal that the CV32E40X has been reset. debug_havereset_o is set high during
the assertion of rst_ni. It will be cleared low a few (unspecified) cycles after rst_ni has been deasserted and
fetch_enable_i has been sampled high.

debug_running_o is used to signal that the CV32E40X is running normally.

debug_halted_o is used to signal that the CV32E40X is in debug mode.

dm_halt_addr_i is the address where the PC jumps to for a debug entry event. When in Debug Mode, an ebreak
instruction will also cause the PC to jump back to this address without affecting status registers. (see EBREAK Behavior
below)

dm_exception_addr_i is the address where the PC jumps to when an exception occurs during Debug Mode. When in
Debug Mode, the mret instruction will also cause the PC to jump back to this address without affecting status registers.

Both dm_halt_addr_i and dm_exception_addr_i must be word aligned.

16.2 Core Debug Registers

CV32E40X implements four core debug registers, namely Debug Control and Status (dcsr), Debug PC (dpc), and two
debug scratch registers. Access to these registers in non Debug Mode results in an illegal instruction.

Several trigger registers are included if DBG_NUM_TRIGGERS is set to a value greater than 0. The following are the most
relevant: Trigger Select Register (tselect), Trigger Data 1 (tdata1), Trigger Data Register 2 (tdata2) and Trigger Info
(tinfo) If DBG_NUM_TRIGGERS is zero, access to the trigger registers will result in an illegal instruction exception.

The TDATA1.DMODE controls write access permission to the currently selected triggers tdata registers. In CV32E40X
this bit is tied to 1, and thus only debug mode is able to write to the trigger registers.

78 Chapter 16. Debug & Trigger



CORE-V-Docs Documentation

16.3 Debug state

As specified in RISC-V Debug Specification ([RISC-V-DEBUG]) every hart that can be selected by the Debug Module
is in exactly one of four states: nonexistent, unavailable, running or halted.

The remainder of this section assumes that the CV32E40X will not be classified as nonexistent by the integrator.

The CV32E40X signals to the Debug Module whether it is running or halted via its debug_running_o and
debug_halted_o pins respectively. Therefore, assuming that this core will not be integrated as a nonexistent
core, the CV32E40X is classified as unavailable when neither debug_running_o or debug_halted_o is asserted.
Upon rst_ni assertion the debug state will be unavailable until some cycle(s) after rst_ni has been deasserted and
fetch_enable_i has been sampled high. After this point (until a next reset assertion) the core will transition between
having its debug_halted_o or debug_running_o pin asserted depending whether the core is in debug mode or not.
Exactly one of the debug_havereset_o, debug_running_o, debug_halted_o is asserted at all times.

Figure 16.1 and show Figure 16.2 show typical examples of transitioning into the running and halted states.

Figure 16.1: Transition into debug running state

Figure 16.2: Transition into debug halted state

The key properties of the debug states are:

• The CV32E40X can remain in its unavailable state for an arbitrarily long time (depending on rst_ni and
fetch_enable_i).

• If debug_req_i is asserted after rst_ni deassertion and before or coincident with the assertion of
fetch_enable_i, then the CV32E40X is guaranteed to transition straight from its unavailable state into
its halted state. If debug_req_i is asserted at a later point in time, then the CV32E40X might transition
through the running state on its ways to the halted state.

• If debug_req_i is asserted during the running state, the core will eventually transition into the halted state
(typically after a couple of cycles).

16.4 EBREAK Behavior

The EBREAK instruction description is distributed across several RISC-V specifications: [RISC-V-DEBUG],
[RISC-V-PRIV], [RISC-V-UNPRIV]. The following is a summary of the behavior for three common scenarios.

16.4.1 Scenario 1 : Enter Exception

Executing the EBREAK instruction when the core is not in Debug Mode and the DCSR.EBREAKM == 0 shall result
in the following actions:

• The core enters the exception handler routine located at MTVEC (Debug Mode is not entered)

• MEPC & MCAUSE are updated

To properly return from the exception, the ebreak handler will need to increment the MEPC to the next instruction.
This requires querying the size of the ebreak instruction that was used to enter the exception (16 bit c.ebreak or 32 bit
ebreak).

Note: The CV32E40X does not support MTVAL CSR register which would have saved the value of the instruction for
exceptions. This may be supported on a future core.
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16.4.2 Scenario 2 : Enter Debug Mode

Executing the EBREAK instruction when the core is not in Debug Mode and the DCSR.EBREAKM == 1 shall result
in the following actions:

• The core enters Debug Mode and starts executing debug code located at dm_halt_addr_i (exception routine
not called)

• DPC & DCSR are updated

Similar to the exception scenario above, the debugger will need to increment the DPC to the next instruction before
returning from Debug Mode.

Note: The default value of DCSR.EBREAKM is 0 and the DCSR is only accessible in Debug Mode. To enter Debug
Mode from EBREAK, the user will first need to enter Debug Mode through some other means, such as from the external
``debug_req_i``, and set DCSR.EBREAKM.

16.4.3 Scenario 3 : Exit Program Buffer & Restart Debug Code

Execuitng the EBREAK instruction when the core is in Debug Mode shall result in the following actions:

• The core remains in Debug Mode and execution jumps back to the beginning of the debug code located at
dm_halt_addr_i

• none of the CSRs are modified
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Note: A bindable RISC-V Formal Interface (RVFI) interface will be provided for CV32E40X. See
[SYMBIOTIC-RVFI] for details on RVFI.

The module cv32e40x_rvfi can be used to create a log of the executed instructions. It is a behavioral, non-
synthesizable, module that can be bound to the cv32e40x_core.

RVFI serves the following purposes:

• It can be used for formal verification.

• It can be used to produce an instruction trace during simulation.

• It can be used as a monitor to ease interfacing with an external scoreboard that itself can be interfaced to an
Instruction Set Simulator (ISS) for verification reasons.

17.1 New Additions

Debug Signals

output [NRET * 3 - 1 : 0] rvfi_dbg
output [NRET - 1 : 0] rvfi_dbg_mode

Debug entry is seen by RVFI as happening between instructions. This means that neither the last instruction before
debug entry nor the first instruction of the debug handler will signal any direct side-effects. The first instruction of
the handler will however show the resulting state caused by these side-effects (e.g. the CSR rmask/rdata signals will
show the updated values, pc_rdata will be at the debug handler address, etc.).

For the first instruction after entering debug, the rvfi_dbg signal contains the debug cause (see table below). The
signal is otherwise 0. The rvfi_dbg_mode signal is high if the instruction was executed in debug mode and low
otherwise.

Table 17.1: Debug Causes
Cause Value
None 0x0
Ebreak 0x1
Trigger Match 0x2
External Request 0x3
Single Step 0x4

NMI signals
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output [1:0] rvfi_nmip

Whenever CV32E40X has a pending NMI, the rvfi_nmip will signal this. rvfi_nmip[0] will be 1 whenever an
NMI is pending, while rvfi_nmip[1] will be 0 for loads and 1 for stores.

Sleep Signals

These signals report core sleep and wakeup information.

output rvfi_wu_t [NRET - 1 : 0] rvfi_wu
output logic [NRET - 1 : 0] rvfi_sleep

Where the rvfi_wu_t struct contains following fields:

Table 17.2: RVFI wu type
Field Type Bits
wu logic [0]
interrupt logic [1]
debug logic [2]
cause logic [10:0] [13:3]

rvfi_sleep is set on the last instruction before the core enters sleep mode. rvfi_wu.wu is set for the first instruction
executed after waking up. rvfi_wu.interrupt is set if the wakeup was caused by an interrupt, and rvfi_wu.debug
is set if the wakeup was caused by a debug request. rvfi_wu.cause signals the wakeup cause exception code.

17.2 Compatibility

This chapter specifies interpretations and compatibilities to the [SYMBIOTIC-RVFI].

Interface Qualification

All RVFI output signals are qualified with the rvfi_valid signal. Any RVFI operation (retired or trapped instruction)
will set rvfi_valid high and increment the rvfi_order field. When rvfi_valid is low, all other RVFI outputs can
be driven to arbitrary values.

Trap Signal

The trap signal indicates that a synchronous trap has ocurred and side-effects can be expected.

output rvfi_trap_t[NRET - 1 : 0] rvfi_trap

Where the rvfi_trap_t struct contains the following fields:

Table 17.3: RVFI trap type
Field Type Bits
trap logic [0]
exception logic [1]
debug logic [2]
exception_cause logic [5:0] [8:3]
debug_cause logic [2:0] [11:9]
cause_type logic [1:0] [13:12]

rvfi_trap consists of 14 bits. rvfi_trap.trap is asserted if an instruction causes an exception or debug en-
try. rvfi_trap.exception is set for synchronous traps that do not cause debug entry. rvfi_trap.debug is set
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for synchronous traps that do cause debug mode entry. rvfi_trap.exception_cause provide information about
non-debug traps, while rvfi_trap.debug_cause provide information about traps causing entry to debug mode.
rvfi_trap.cause_type differentiates between fault causes that map to the same exception code in rvfi_trap.
exception_cause and rvfi_trap.debug_cause. When an exception is caused by a single stepped instruction,
both rvfi_trap.exception and rvfi_trap.debug will be set. When rvfi_trap signals a trap, CSR side effects
and a jump to a trap/debug handler in the next cycle can be expected. The different trap scenarios, their expected
side-effects and trap signalling are listed in the table below:

Table 17.4: Table of synchronous trap types
Scenario Trap

Type
rvfi_trap CSRs

up-
dated

Description

trap ex-
cep-
tion

de-
bug

excep-
tion_cause

de-
bug_cause

cause_type

Instruction
Access
Fault

Ex-
cep-
tion

1 1 X 0x01 X 0x0 mcause,
mepc

PMA detects instruction ex-
ecution from non-executable
memory.

Illegal In-
struction

Ex-
cep-
tion

1 1 X 0x02 X 0x0 mcause,
mepc

Illegal instruction decode.

Break-
point

Ex-
cep-
tion

1 1 X 0x03 X 0x0 mcause,
mepc

EBREAK executed with
dcsr.ebreakm = 0.

Load
Access
Fault

Ex-
cep-
tion

1 1 X 0x05 X 0x0 mcause,
mepc

Non-naturally aligned load ac-
cess attempt to an I/O region.

0x1 mcause,
mepc

Load-Reserved attempt to re-
gion without atomic support.

Store/AMO
Access
Fault

Ex-
cep-
tion

1 1 X 0x07 X 0x0 mcause,
mepc

Non-naturally aligned store ac-
cess attempt to an I/O region.

0x1 mcause,
mepc

SC or AMO attempt to region
without atomic support.

Envi-
ronment
Call

Ex-
cep-
tion

1 1 X 0x0B X 0x0 mcause,
mepc

ECALL executed from Ma-
chine mode.

Instruction
Bus Fault

Ex-
cep-
tion

1 1 X 0x30 X 0x0 mcause,
mepc

OBI bus error on instruction
fetch.

Break-
point to
debug

De-
bug

1 0 1 X 0x1 0x0 dpc,
dcsr

EBREAK from non-debug
mode executed with dcsr.
ebreakm == 1.

Break-
point in
debug

De-
bug

1 0 1 X 0x1 0x0 No
CSRs
up-
dated

EBREAK in debug mode
jumps to debug handler.

Debug
Trigger
Match

De-
bug

1 0 1 X 0x2 0x0 dpc,
dcsr

Debug trigger address match
with mcontrol.timing = 0.

Single step De-
bug

1 X 1 X 0x4 X dpc,
dcsr

Single step.

Interrupts

Interrupts are seen by RVFI as happening between instructions. This means that neither the last instruction before the
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interrupt nor the first instruction of the interrupt handler will signal any direct side-effects. The first instruction of the
handler will however show the resulting state caused by these side-effects (e.g. the CSR rmask/rdata signals will show
the updated values, pc_rdata will be at the interrupt handler address etc.).

output rvfi_intr_t[NRET - 1 : 0] rvfi_intr

Where the rvfi_intr_t struct contains the following fields:

Table 17.5: RVFI intr type
Field Type Bits
intr logic [0]
exception logic [1]
interrupt logic [2]
cause logic [10:0] [13:3]

rvfi_intr consists of 14 bits. rvfi_intr.intr is set for the first instruction of the trap handler when encountering
an exception or interrupt. rvfi_intr.exception indicates it was caused by synchronous trap and rvfi_intr.
interrupt indicates it was caused by an interrupt. rvfi_intr.cause signals the cause for entering the trap handler.

rvfi_intr is not set for debug traps unless a debug entry happens in the first instruction of an interrupt handler (see
rvfi_intr == X in the table below). In this case CSR side-effects (to mepc) can be expected.

Table 17.6: Table of scenarios for 1st instruction of excep-
tion/interrupt/debug handler

Scenario rvfi_intr rvfi_dbg[2:0]mcause[31]dcsr[8:6]
(cause)intr ex-

cep-
tion

inter-
rupt

cause

Synchronous trap 0 1 1 Sync trap
cause

0x0 0 X

Interrupt (includes NMIs from bus
errors)

1 0 1 Interrupt
cause

0x0 1 X

Debug entry due to EBREAK (from
non-debug mode)

0 0 0 0x0 0x1 X 0x1

Debug entry due to EBREAK (from
debug mode)

0 0 0 0x0 0x1 X X

Debug entry due to trigger match 0 0 0 0x0 0x2 X 0x2
Debug entry due to external debug
request

X X X X 0x3 or
0x5

X 0x3 or 0x5

Debug handler entry due to single
step

X X X X 0x4 X 0x4

Program Counter

The pc_wdata signal shows the predicted next program counter. This prediction ignores asynchronous traps (asyn-
chronous debug requests and interrupts) and single step debug requests that may have happened at the same time as the
instruction.

Memory Access

For cores as CV32E40X that support misaligned access rvfi_mem_addr will not always be 4 byte aligned. For mis-
aligned accesses the start address of the transfer is reported (i.e. the start address of the first sub-transfer).

CSR Signals
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To reduce the number of signals in the RVFI interface, a vectorized CSR interface has been introduced for register
ranges.

output [<NUM_CSRNAME>-1:0] [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_rmask
output [<NUM_CSRNAME>-1:0] [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_wmask
output [<NUM_CSRNAME>-1:0] [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_rdata
output [<NUM_CSRNAME>-1:0] [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_wdata

Example:

output [31:0] [31:0] rvfi_csr_name_rmask
output [31:0] [31:0] rvfi_csr_name_wmask
output [31:0] [31:0] rvfi_csr_name_rdata
output [31:0] [31:0] rvfi_csr_name_wdata

Instead of:

output [31:0] rvfi_csr_name0_rmask
output [31:0] rvfi_csr_name0_wmask
output [31:0] rvfi_csr_name0_rdata
output [31:0] rvfi_csr_name0_wdata
. . .
output [31:0] rvfi_csr_name31_rmask
output [31:0] rvfi_csr_name31_wmask
output [31:0] rvfi_csr_name31_rdata
output [31:0] rvfi_csr_name31_wdata

Machine Counter/Timers

In contrast to [SYMBIOTIC-RVFI], the mcycle[h] and minstret[h] registers are not modelled as happening “between
instructions” but rather as a side-effect of the instruction. This means that an instruction that causes an increment
(or decrement) of these counters will set the rvfi_csr_mcycle_wmask, and that rvfi_csr_mcycle_rdata is not
necessarily equal to rvfi_csr_mcycle_wdata.

Halt Signal

The rvfi_halt signal is meant for liveness properties of cores that can halt execution. It is only needed for cores that
can lock up. Tied to 0 for RISC-V compliant cores.

Mode Signal

The rvfi_mode signal shows the current privilege mode as opposed to the effective privilege mode of the instruction.
I.e. for load and store instructions the reported privilege level will therefore not depend on mstatus.mpp and mstatus.
mprv.

17.3 Trace output file

Tracing can be enabled during simulation by defining CV32E40X_TRACE_EXECUTION. All traced instructions
are written to a log file. The log file is named trace_rvfi.log.
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17.4 Trace output format

The trace output is in tab-separated columns.

1. PC: The program counter

2. Instr: The executed instruction (base 16). 32 bit wide instructions (8 hex digits) are uncompressed instructions,
16 bit wide instructions (4 hex digits) are compressed instructions.

3. rs1_addr Register read port 1 source address, 0x0 if not used by instruction

4. rs1_data Register read port 1 read data, 0x0 if not used by instruction

5. rs2_addr Register read port 2 source address, 0x0 if not used by instruction

6. rs2_data Register read port 2 read data, 0x0 if not used by instruction

7. rd_addr Register write port 1 destination address, 0x0 if not used by instruction

8. rd_data Register write port 1 write data, 0x0 if not used by instruction

9. mem_addr Memory address for instructions accessing memory

10. rvfi_mem_rmask Bitmask specifying which bytes in rvfi_mem_rdata contain valid read data

11. rvfi_mem_wmask Bitmask specifying which bytes in rvfi_mem_wdata contain valid write data

12. rvfi_mem_rdata The data read from memory address specified in mem_addr

13. rvfi_mem_wdata The data written to memory address specified in mem_addr

PC Instr rs1_addr rs1_rdata rs2_addr rs2_rdata rd_addr rd_wdata mem_
→˓addr mem_rmask mem_wmask mem_rdata mem_wdata
00001f9c 14c70793 0e 000096c8 0c 00000000 0f 00009814 ␣
→˓00009814 0 0 00000000 00000000
00001fa0 14f72423 0e 000096c8 0f 00009814 00 00000000 ␣
→˓00009810 0 f 00000000 00009814
00001fa4 0000bf6d 1f 00000000 1b 00000000 00 00000000 ␣
→˓00001fa6 0 0 00000000 00000000
00001f5e 000043d8 0f 00009814 04 00000000 0e 00000000 ␣
→˓00009818 f 0 00000000 00000000
00001f60 0000487d 00 00000000 1f 00000000 10 0000001f ␣
→˓0000001f 0 0 00000000 00000000
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EIGHTEEN

CORE-V INSTRUCTION SET EXTENSIONS

CV32E40X does not support any custom ISA Extensions internal to the core. Custom instructions can be added external
to the core via the eXtension interface described in eXtension Interface.
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NINETEEN

CORE VERSIONS AND RTL FREEZE RULES

The CV32E40X is defined by the marchid and mimpid tuple. The tuple identify which sets of parameters have been
verified by OpenHW Group, and once RTL Freeze is achieved, no further non-logically equivalent changes are allowed
on that set of parameters.

The RTL Freeze version of the core is indentified by a GitHub tag with the format cv32e40x_vMAJOR.MINOR.PATCH
(e.g. cv32e40x_v1.0.0). In addition, the release date is reported in the documentation.

19.1 What happens after RTL Freeze?

19.1.1 A bug is found

If a bug is found that affect the already frozen parameter set, the RTL changes required to fix such bug are non-logically
equivalent by definition. Therefore, the RTL changes are applied only on a different mimpid value and the bug and the
fix must be documented. These changes are visible by software as the mimpid has a different value. Every bug or set
of bugs found must be followed by another RTL Freeze release and a new GitHub tag.

19.1.2 RTL changes on non-verified yet parameters

If changes affecting the core on a non-frozen parameter set are required, then such changes must remain logically
equivalent for the already frozen set of parameters (except for the required mimpid update), and they must be applied
on a different mimpid value. They can be non-logically equivalent to a non-frozen set of parameters. These changes
are visible by software as the mimpid has a different value. Once the new set of parameters is verified and achieved the
sign-off for RTL freeze, a new GitHub tag and version of the core is released.

19.1.3 PPA optimizations and new features

Non-logically equivalent PPA optimizations and new features are not allowed on a given set of RTL frozen parameters
(e.g., a faster divider). If PPA optimizations are logically-equivalent instead, they can be applied without changing the
mimpid value (as such changes are not visible in software). However, a new GitHub tag should be released and changes
documented.
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19.2 Released core versions

The verified parameter sets of the core, their implementation version, GitHub tags, and dates are reported here.
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TWENTY

GLOSSARY

• ALU: Arithmetic/Logic Unit

• ASIC: Application-Specific Integrated Circuit

• Byte: 8-bit data item

• CPU: Central Processing Unit, processor

• CSR: Control and Status Register

• Custom extension: Non-Standard extension to the RISC-V base instruction set (RISC-V Instruction Set Manual,
Volume I: User-Level ISA)

• EXE: Instruction Execute

• FPGA: Field Programmable Gate Array

• FPU: Floating Point Unit

• Halfword: 16-bit data item

• Halfword aligned address: An address is halfword aligned if it is divisible by 2

• ID: Instruction Decode

• IF: Instruction Fetch (Instruction Fetch)

• ISA: Instruction Set Architecture

• KGE: kilo gate equivalents (NAND2)

• LSU: Load Store Unit (Load-Store-Unit (LSU))

• M-Mode: Machine Mode (RISC-V Instruction Set Manual, Volume II: Privileged Architecture)

• NMI: Non-Maskable Interrupt

• OBI: Open Bus Interface

• PC: Program Counter

• PMA: Physical Memory Attribution

• RV32C: RISC-V Compressed (C extension)

• RV32F: RISC-V Floating Point (F extension)

• SIMD: Single Instruction/Multiple Data

• Standard extension: Standard extension to the RISC-V base instruction set (RISC-V Instruction Set Manual,
Volume I: User-Level ISA)

• WARL: Write Any Values, Reads Legal Values
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• WB: Write Back of instruction results

• WLRL: Write/Read Only Legal Values

• Word: 32-bit data item

• Word aligned address: An address is word aligned if it is divisible by 4

• WPRI: Reserved Writes Preserve Values, Reads Ignore Values
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