
CVA6

OpenHW contributors

Feb 06, 2023

CONTENTS

1 CORE-V Nomenclature 3

2 Organization of this Document 5
2.1 OpenHW Group CVA6 User Manual . 5
2.2 CVA6 Requirement Specification . 29
2.3 CV32A6 Design Document . 40

i

ii

CVA6

The goal of the CVA6 project is create a family of production quality, open source, application class RISC-V CPU
cores. The CVA6 targets both ASIC and FPGA implementations, although individual cores may target a specific
implementation technology. The CVA6 is written in SystemVerilog and is heavily parameterizable. For example
parameters can set the ILEN to be either 32- or 64-bits and support for floating point can be enabled/disabled.

CONTENTS 1

CVA6

2 CONTENTS

CHAPTER

ONE

CORE-V NOMENCLATURE

CORE-V is the name of the OpenHW Group family of RISC-V cores. CVA6 is the name of a GitHub repository for
the source code for a set of application class CORE-V cores. The CV prefix identifies it as a member of the CORE-V
family and the A6 indicates that it is an application class processor with a six stage execution pipeline. However, the
CVA6 “as is” is not intended to implement a specific production core. Rather, the CVA6 is expected to be the basis for
a number of application class cores. The naming convention for these cores is:

CV <ILEN> <class> <# of pipeline stages> <product identifier>

Thus, the CV64A60 would be a 64-bit application core with a six stage pipeline. Note that in this example, the product
identifer is “0”.

3

CVA6

4 Chapter 1. CORE-V Nomenclature

CHAPTER

TWO

ORGANIZATION OF THIS DOCUMENT

This documentation is split into multiple parts.

The CVA6 User Guide provides a detailed introduction to the CVA6. This document is based on the original Ariane
documentation and is aimed at hardware developers integrating CVA6 into a design.

The CVA6 Requirements Specification is the top-level specification of the CVA6. One of the key attributes of this
document is to specify the feature set of specific CORE-V products based on CVA6. This document focuses on _what_
the CVA6 does, without detailed consideration of _how_ a specific requirement is implemented. The target audience
of this document is current and existing members of the OpenHW Group who wish to participate in the definition of
future cores based on the CVA6.

The CV32A6 Design Specification describes in detail the CV32A6, the first production quality 32-bit application pro-
cessor derived from the CVA6. The primary audience for this documentation are design and verification engineers
working to bring the CV32A6 to TRL-5.

2.1 OpenHW Group CVA6 User Manual

Editor: Florian Zaruba florian@openhwgroup.org

2.1.1 Introduction

This document describes the 6-stage, single issue Ariane CPU which implements the 64-bit RISC-V instruction set. It
fully implements I, M and C extensions as specified in Volume I: User-Level ISA V 2.1 as well as the draft privilege
extension 1.10. It implements three privilege levels M, S, U to fully support a Unix-like operating system.

Scope and Purpose

The purpose of the core is to run a full OS at reasonable speed and IPC. To achieve the necessary speed the core features
a 6-stage pipelined design. In order to increase the IPC the CPU features a scoreboard which should hide latency to
the data RAM (cache) by issuing data-independent instructions. The instruction RAM has (or L1 instruction cache) an
access latency of 1 cycle on a hit, while accesses to the data RAM (or L1 data cache) have a longer latency of 3 cycles
on a hit.

5

mailto:florian@openhwgroup.org?subject=CVA6%20User%20Manual

CVA6

2.1.2 PC Generation

PC gen is responsible for generating the next program counter. All program counters are logical addressed. If the
logical to physical mapping changes a fence.vm instruction should flush the pipeline and TLBs.

This stage contains speculation on the branch target address as well as the information if the branch is taken or not. In
addition, it houses the branch target buffer (BTB) and a branch history table (BHT).

If the BTB decodes a certain PC as a jump the BHT decides if the branch is taken or not. Because of the various state-
full memory components this stage is split into two pipeline stages. PC Gen communicates with the IF via a handshake
signal. Instruction fetch signals its readiness with an asserted ready signal while PC Gen signals a valid request by
asserting the fetch_valid signal.

The next PC can originate from the following sources (listed in order of precedence):

1. Default assignment: The default assignment is to fetch PC + 4. PC Gen always fetches on a word boundary
(32-bit). Compressed instructions are handled in a later pipeline step.

2. Branch Predict: If the BHT and BTB predict a branch on a certain PC, PC Gen sets the next PC to the predicted
address and also informs the IF stage that it performed a prediction on the PC. This is needed in various places
further down the pipeline (for example to correct prediction). Branch information which is passed down the
pipeline is encapsulated in a structure called branchpredict_sbe_t. In contrast to branch prediction informa-
tion which is passed up the pipeline which is just called bp_resolve_t. This is used for corrective actions (see
next bullet point). This naming convention should make it easy to detect the flow of branch information in the
source code.

3. Control flow change request: A control flow change request occurs from the fact that the branch predictor mis-
predicted. This can either be a ‘real’ mis-prediction or a branch which was not recognized as one. In any case
we need to correct our action and start fetching from the correct address.

6 Chapter 2. Organization of this Document

CVA6

4. Return from environment call: A return from an environment call performs corrective action of the PC in
terms of setting the successive PC to the one stored in the [m|s]epc register.

5. Exception/Interrupt: If an exception (or interrupt, which is in the context of RISC-V systems quite similar)
occurs PC Gen will generate the next PC as part of the trap vector base address. The trap vector base address can
be different depending on whether the exception traps to S-Mode or M-Mode (user mode exceptions are currently
not supported). It is the purpose of the CSR Unit to figure out where to trap to and present the correct address to
PC Gen.

6. Pipeline Flush because of CSR side effects: When a CSR with side-effects gets written we need to flush the
whole pipeline and start fetching from the next instruction again in order to take the up-dated information into
account (for example virtual memory base pointer changes).

7. Debug: Debug has the highest order of precedence as it can interrupt any control flow requests. It also the only
source of control flow change which can actually happen simultaneously to any other of the forced control flow
changes. The debug unit reports the request to change the PC and the PC which the CPU should change to.

This unit also takes care of a signal called fetch_enable which purpose is to prevent fetching if not asserted. Also
note that no flushing takes place in this unit. All the flush information is distributed by the controller. Actually the
controller’s only purpose is to flush different pipeline stages.

Branch Prediction

Ariane
Block Diagram

All branch prediction data structures reside in a single register-file like data structure. It is indexed with the appropriate
number of bits from the PC and contains information about the predicted target address as well as the outcome of a

2.1. OpenHW Group CVA6 User Manual 7

CVA6

configurable-width saturation counter (two by default). The prediction result is used in the subsequent stage to jump
(or not).

In addition of providing prediction result the BTB also updates its information on mis-predictions. It can either correct
the saturation counter or clear the branch prediction entry. The latter is done when the branch unit saw that the predicted
PC didn’t match or an when an instruction with privilege changing side-effect is committing.

The branch-outcome and the branch target address are calculated in the same functional unit therefore a mis-prediction
on the target address is as costly as a mis-prediction on the branch decision. As the branch unit (the functional unit
which does all the branch-handling) is already quite critical in terms of timing this is a potential improvement.

As Ariane fully implements the compressed instruction set branches can also happen on 16-bit (or half word) instruc-
tions. As this would significantly increase the size of the BTB the BTB is indexed with a word aligned PC. This brings
the potential draw-back that branch-prediction does always mis-predict on a instruction fetch word which contains two
compressed branches. However, such case should be rare in reality.

A trick we played here is to take the next PC (e.g.: the word aligned PC of the upper 16-bit of this instruction) of an
un-aligned instruction to index the BTB. This naturally allows the the IF stage to fetch all necessary instruction data.
Actually it will fetch two more unused bytes which are then discarded by the instruction re-aligner. For that reason we
also need to keep an additional bit whether the instruction is on the lower or upper 16-bit.

For branch prediction a potential source of unnecessary pipeline bubbles is aliasing. To prevent aliasing from happening
(or at least make it more unlikely) a couple of tag bits (upper bits from the indexed PC) are used and compared on every
access. This is a trade-off necessary as we are lacking sufficiently fast SRAMs which could be used to host the BTB.
Instead we are forced to use register which have a significantly larger impact on over all area and power consumption.

2.1.3 Instruction Fetch Stage

Instruction Fetch stage (IF) gets its information from the PC Gen stage. This information includes information about
branch prediction (was it a predicted branch? which is the target address? was it predicted to be taken?), the current
PC (word-aligned if it was a consecutive fetch) and whether this request is valid. The IF stage asks the MMU to do
address translation on the requested PC and controls the I$ (or just an instruction memory) interface. The instruction
memory interface is described in more detail in .

The delicate part of the instruction fetch is that it is very timing critical. This fact prevents us from implementing some
more elaborate handshake protocol (as round-times would be too large). Therefore the IF stage signals the I$ interface
that it wants to do a fetch request to memory. Depending on the cache’s state this request may be granted or not. If it
was granted the instruction fetch stage puts the request in an internal FIFO. It needs to do so as it has to know at any
point in time how many transactions are outstanding. This is mostly due to the fact that instruction fetch happens on
a very speculative basis because of branch prediction. It can always be the case that the controller decides to flush the
instruction fetch stage in which case it needs to discard all outstanding transactions.

The current implementation allows for a maximum of two outstanding transaction. If there are more than two the IF
stage will simply not acknowledge any new request from PC Gen. As soon as a valid answer from memory returns (and
the request is not considered out-dated because of a flush) the answer is put into a FIFO together with the fetch address
and the branch prediction information.

Together with the answer from memory the MMU will also signal potential exceptions. Therefore this is the first place
where exceptions can potentially happen (bus errors, invalid accesses and instruction page faults).

8 Chapter 2. Organization of this Document

CVA6

Fetch FIFO

The fetch FIFO contains all requested (valid) fetches from instruction memory. The FIFO currently has one write port
and two read ports (of which only one is used). In a future implementation the second read port could potentially be
used to implement macro-op fusion or widen the issue interface to cover two instructions.

The fetch FIFO also fully decouples the processor’s front-end and its back-end. On a flush request the whole fetch FIFO
is reset.

2.1.4 Instruction Decode

Instruction decode is the fist pipeline stage of the processor’s back-end. Its main purpose is to distill instructions from
the data stream it gets from IF stage, decode them and send them to the issue stage.

With the introduction of compressed instructions (in general variable length instructions) the ID stage gets a little bit
more complicated: It has to search the incoming data stream for potential instructions, re-align them and (in the case of
compressed instructions) decompress them. Furthermore, as we will know at the end of this stage whether the decoded
instruction is branch instruction it passes this information on to the issue stage.

Instruction Re-aligner

Instruction
re-alignment Process

As mentioned above the instruction re-aligner checks the incoming data stream for compressed instructions. Com-
pressed instruction have their last bit unequal to 11 while normal 32-bit instructions have their last two bit set to 11.
The main complication arises from the fact that a compressed instruction can make a normal instruction unaligned

2.1. OpenHW Group CVA6 User Manual 9

CVA6

(e.g.: the instruction starts at a half word boundary). This can (in the worst case) mandate two memory accesses before
the instruction can be fully decoded. We therefore need to make sure that the fetch FIFO has enough space to keep
the second part of the instruction. Therefore the instruction re-aligner needs to keep track of whether the previous
instruction was unaligned or compressed to correctly decide what to do with the upcoming instruction.

Furthermore, the branch-prediction information is used to only output the correct instruction to the issue stage. As we
only predict on word-aligned PCs the passed on branch prediction information needs to be investigated to rule out which
instruction we are actually need, in case there are two instructions (compressed or unaligned) present. This means that
we potentially have to discard one of the two instructions (the instruction before the branch target). For that reason the
instruction re-aligner also needs to check whether this fetch entry contains a valid and taken branch. Depending on
whether it is predicted on the upper 16 bit it has to discard the lower 16 bit accordingly. This process is illustrate in .

Compressed Decoder

As mentioned earlier we also need to decompress all the compressed instructions. This is done by a small combinatorial
circuit which takes a 16-bit compressed instruction and expands it to its 32-bit equivalent. All compressed instructions
have a 32-bit equivalent.

Decoder

The decoder either takes the raw instruction data or the uncompressed equivalent of the 16-bit instruction and decodes
them accordingly. It transforms the raw bits to the most fundamental control structure in Ariane, a scoreboard entry:

• PC: PC of instruction

• FU: functional unit to use

• OP: operation to perform in each functional unit

• RS1: register source address 1

• RS2: register source address 2

• RD: register destination address

• Result: for unfinished instructions this field also holds the immediate

• Valid: is the result valid

• Use I Immediate: should we use the immediate as operand b?

• Use Z Immediate: use zimm as operand a

• Use PC: set if we need to use the PC as operand a, PC from exception

• Exception: exception has occurred

• Branch predict: branch predict scoreboard data structure

• Is compressed: signals a compressed instructions, we need this information at the commit stage if we want jump
accordingly e.g.: +4, +2

It gets incrementally processed further down the pipeline. The scoreboard entry controls operand selection, dispatch and
the execution. Furthermore it contains an exception entry which strongly ties the particular instruction to its potential
exception. As the first time an exception could have occoured was already in the IF stage the decoder also makes sure
that this exception finds its way into the scoreboard entry. A potential illegal instruction exception can occur during
decoding. If this is the case and no previous exception has happened the decoder will set the corresponding exceptions
field along with the faulting bits (in [s|m]tval). As this is not the only point in which illegal instruction exception
can happen and an illegal instruction exception always asks for the faulting address in the [s|m]tval field this field
gets set here anyway. But only if instruction fetch didn’t throw an exception for this instruction yet.

10 Chapter 2. Organization of this Document

CVA6

2.1.5 Issue Stage

The issue stage’s purpose is to receive the decoded instructions and issue them to the various functional units. Further-
more the issue stage keeps track of all issued instructions, the functional unit status and receives the write-back data
from the execute stage. Furthermore it contains the CPU’s register file. By using a data-structure called scoreboard
(see) it knows exactly which instructions are issued, which functional unit they are in and which register they will
write-back to. As previously mentioned you can roughly divide the execution in four parts 1. issue, 2. read operands,
3. execute and 4. write-back. The issue stage handles step one, two and four.

2.1. OpenHW Group CVA6 User Manual 11

CVA6

Ariane

12 Chapter 2. Organization of this Document

CVA6

Scoreboard

Issue

When the issue stage gets a new decoded instruction it checks whether the required functional unit is free or will be
free in the next cycle. Then it checks if its source operands are available and if no other, currently issued, instruction
will write the same destination register. Furthermore it keeps track that no unresolved branch gets issued. The latter is
mainly needed to simplify hardware design. By only allowing one branch we can easily back-track if we later find-out
that we’ve mis-predicted on it.

By ensuring that the scoreboard only allows one instruction to write a certain destination register it easies the design
of the forwarding path significantly. The scoreboard has a combinatorial circuit which outputs the status of all 32
destination register together with what functional unit will produce the outcome. This signal is called rd_clobber.

The issue stage communicates with the various functional units independently. This in particular means that it has
to monitor their ready and valid signals, receive and store their write-back data unconditionally. It will always have
enough space as it allocates a slot in the scoreboard for every issued instruction. This solves the potential structural
hazards of smaller microprocessors. This modular design will also allow to explore more advanced issuing technique
like out-of-order issue ().

The issuing of instructions happen in-order, that means order of program flow is naturally maintained. What can happen
out-of-order is the write-back of each functional unit. Think for example, that the issue stage issues a multiplication
which takes n clock cycles to produce a valid result. In the next cycle the issue stage issues an ALU instruction like
an addition. The addition will just take one clock cycle to return and therefore return before the multiplication’s result
is ready. Because of this we need to assign IDs to the various issue stages. The ID resembles the (unique) position in
which the scoreboard will store the result of this instruction. The ID (called transaction ID) has enough bits to uniquely
represent each slot in the scoreboard and needs to be passed along with the other data to the corresponding functional
unit.

This scheme allows the functional units to operate in complete independence of the issue logic. They can return different
transactions in different order. The scoreboard will know where to put them as long as the corresponding ID is signaled
alongside the result. This scheme even allows the functional unit to buffer results and process them entirely out-of-order
if it makes sense to them. This is a further example of how to efficiently decouple the different modules of a processor.

Read Operands

Read operands is physically happens in the same cycle as the issuing of instructions but can be conceptually thought
of as another stage. As the scoreboard knows which registers are getting written it can handle the forwarding of those
operands if necessary. The design goal was to execute two ALU instructions back to back (e.g.: with no bubble in
between). The operands come from either the register file (if no other instruction currently in the scoreboard will write
that register) or be forwarded by the scoreboard (by looking at the rd_clobber signal).

The operand selection logic is a classical priority selection giving precedence to results form the scoreboard over the
register file as the functional unit will always produce the more up to date result. To obtain the right register value we
need to poll the scoreboard for both source operands.

2.1. OpenHW Group CVA6 User Manual 13

CVA6

Scoreboard

The scoreboard is implemented as a FIFO with one read and one write port with valid and acknowledge signals. In
addition to that it provides the aforementioned signals which tell the rest of the CPU which registers are going to be
clobbered by a previously scheduled instruction. Instruction decode directly writes to the scoreboard if it is not already
full. The commit stage looks for already finished instructions and updates the architectural state. Which either means
going for an exception, updating the register or CSR file.

2.1.6 Execute Stage

The execute stage is a logical stage which encapsulates all the functional units (FUs). The FUs are not supposed to have
inter-unit dependencies for the moment, e.g.: every FU must be able to perform its operation independently of every
other unit. Each functional unit maintains a valid signal with which it will signal valid output data and a ready signal
which tells the issue logic whether it is able to accept a new request or not. Furthermore, as briefly explained in the
section about instruction issue (), they also receive a unique transaction ID. The functional unit is supposed to return
this transaction ID together with the valid signal an the result. At the time of this writing the execute stage houses an
ALU, a branch unit, a load store unit (LSU), a CSR buffer and a multiply/divide unit.

ALU

The arithmetic logic unit (ALU) is a small piece of hardware which performs 32 and 64-bit subtraction, addition,
shifts and comparisons. It always completes its operation in a single cycle and therefore does not contain any state-full
elements. Its ready signal is always asserted and it simply passes the transaction ID from its input to its output. Together
with the two operands it also receives an operator which tells it which operation to perform.

Branch Unit

The branch unit’s purpose is to manage all kind of control flow changes i.e.: conditional and unconditional jumps. It
does so by providing an adder to calculate the target address and some comparison logic to decide whether to take the
branch or not. Furthermore it also decides if a branch was mis-predicted or not and reporting corrective actions to the
PC Gen stage. Corrective actions include updating the BHT and setting the PC if necessary. As it can be that jumps are
predicted on any instruction (including instructions which are no jumps at all - see aliasing problem in PC Gen section)
it needs to know whenever an instruction gets issued to a functional unit and monitor the branch prediction information.
If a branch was accidentally predicted on a non-branch instruction it also takes corrective action and re-sets the PC to
the correct address (depending on whether the instruction was compressed or not it add PC + 2 or PC + 4).

As briefly mentioned in the section about instruction re-aligning the branch unit places the PC from an unaligned 32-bit
instruction on the upper 16-bit (e.g.: on a new word boundary). Moreover if an instruction is compressed it also has
an influence on the reported prediction as it needs to set a bit if the prediction occurred on the lower 16 bit (e.g.: the
lower compressed instruction).

As can be seen this all adds a lot of costly operations to this stage, mostly comparison and additions. Therefore the
branch unit is on the critical path of the overall design. Nevertheless, it was our design-choice to keep branches a single
cycle operation. Still, it could be the case that in a future version it might make sense to split this path. This would
bring some costly IPC implications to the overall design mainly because of the current restriction that the scoreboard
is only admitting new instructions if there are no unresolved branches. With a single cycle operation all branches are
resolved in the same cycle of issue which doesn’t introduce any pipeline stalls.

14 Chapter 2. Organization of this Document

CVA6

Load Store Unit (LSU)

Load/Store
Unit

The load store unit is similar to every other functional unit. In addition, it has to manage the interface to the data
memory (D$). In particular, it houses the DTLB (Data Translation Lookaside Buffer), the hardware page table walker
(PTW) and the memory management unit (MMU). It also arbitrates the access to data memory between loads, stores
and the PTW - giving precedence to PTW lookups. This is done in order to resolve TLB misses as soon as possible.
A high level block diagram of the LSU can be found in .

The LSU can issue load request immediately while stores need to be kept back as long as the scoreboard does not issue a
commit signal: This is done because the whole processor is designed to only have a single commit point (see). Because
issuing loads to the memory hierarchy does not have any semantic side effects the LSU can issue them immediately,
totally in contrast to the nature of a store. Stores alter the architectural state and are therefore placed in a store buffer
only to be committed in a later step by the commit stage. Sometimes this is also called posted-store because the store
request is posted to the store queue and waiting for entering the memory hierarchy as soon as the commit signal goes
high and the memory interface is not in use.

Therefore, upon a load, the LSU also needs to check the store buffer for potential aliasing. Should it find uncommitted
data it stalls, since it can’t satisfy the current request.

This means:

• Two loads to the same address are allowed. They will return in issue order.

• Two stores to the same address are allowed. They are issued in-order by the scoreboard and stored in-order in
the store buffer as long as the scoreboard didn’t give the signal to commit them.

• A store followed by a load to the same address can only be satisfied if the store has already been committed
(marked as committed in the store buffer). Otherwise the LSU stalls until the scoreboard commits the instruction.
We cannot guarantee that the store will eventually be committed (e.g.: an exception occurred).

For the moment being, the LSU does not handle misaligned accesses. In particular this means that access which are
not aligned to a 64 bit boundary for double word accesses, access which are not aligned to a 32-bit boundary for word

2.1. OpenHW Group CVA6 User Manual 15

CVA6

access and the accesses which are not aligned on 16-bit boundary for half word access. If encounters such a load or store
it will throw a misaligned exception and lets the exception handler resolve the load or store. In addition to mis-aligned
exceptions it can also throw page fault exceptions.

To ease the design of the LSU it is split in 6 major parts of which each is described in more detail in the upcoming
paragraphs:

1. LSU Bypass

2. D$ Arbiter

3. Load Unit

4. Store Unit

5. MMU (including TLBs and PTW)

6. Non-blocking data cache

LSU Bypass {#par:lsu_bypass}

The LSU bypass module is a auxiliary module which manages the LSU status information (full flag etc.) which it
presents to the issue stage. This is necessary for a the following reason: The design of the LSU is critical in most aspects
as it directly interfaces the relatively slow SRAMs. It additionally needs to do some costly operation in sequence. The
most costly (in terms of timing) being address generation, address translation and checking the store buffer for potential
aliasing. Therefore it is only known very late whether the current load/store can go to memory or if additional cycles
are needed. From which aliasing on the store buffer and TLB miss are the most prominent ones. As the issue stage
relies on the ready signal to dispatch new instructions this would result in an overly long path which would considerably
slow down the whole design because of some corner cases.

To mitigate this problem a FIFO is added which can hold another request from issue stage. Therefore the ready flag
of the functional units can be delayed by one cycle which eases timing. The LSU bypass model further decouples
the functional unit from the issue stage. This is mostly necessary as the issue stage can’t stall as soon as it issued an
instruction. In particular the LSU bypass is called that way because it is either bypassed or serves the load or store unit
from its internal FIFO until they signal completion to the LSU bypass module.

Load Unit {#par:load_unit}

The load unit takes care of all loads. Loads are issued as soon as possible as they do not have any side effects. Before
issuing a load the load unit needs to check the store buffer for stores which are not committed into the memory hierarchy
yet in order to avoid loading stale data. As a full comparison is quite costly only the lower 12 bit (the page-offset where
physical and virtual addresses are the same) are compared. This has two major advantages: the comparison is only
12-bit instead of 64-bit and therefore faster when done on the whole buffer and the physical address is not needed which
implies that we don’t need to wait for address translation to finish. If the page offset matches with one of the outstanding
stores the load unit simply stalls and waits until the store buffer is drained. As an improvement one could do some more
elaborate data forwarding as the data in the store buffer is the most up-to-date. This is not done at the moment.

Furthermore the load unit needs to perform address translation. It makes use of virtually indexed and physically tagged
D$ access scheme in order to reduce the number of cycles needed for load accesses. As it can happen that a load blocks
the D$ it has to kill the current request on the memory interface to give way to the hardware PTW on the cache side.
Some more advanced caching infrastructure (like a non-blocking cache) would alleviate this problem.

16 Chapter 2. Organization of this Document

CVA6

Store Unit {#par:store_unit}

The store unit manages all stores. It does so by calculating the target address and setting the appropriate byte enable
bits. Furthermore it also performs address translation and communicates with the load unit to see if any load matches
an outstanding store in one of its buffers. Most of the store units business logic resides in the store buffer which is
described in detail in the next section.

Store Buffer {#par:store_buffer}

The store buffer keeps track of all stores. It actually consists of two buffers: One is for already committed instructions
and one is for outstanding instructions which are still speculative. On a flush only the instruction which are already
committed are persisted while the speculative queue is completely emptied. To prevent buffer overflows the two queues
maintain a full flag. The full flag of the speculative queue directly goes to the store unit, which will stall the LSU bypass
module and therefore not receive any more requests. On the contrast the full signal of the commit queue goes to the
commit stage. Commit stage will stall if it the commit queue can’t accept any new data items. On every committed
store the commit stage also asserts the lsu_commit signal which will put the particular entry from the speculative
queue into the non-sepculative (commit) queue.

As soon as a store is in the commit queue the queue will automatically try to commit the oldest store in the queue to
memory as soon as the cache grants the request.

The store buffer only works with physical addresses. At the time when they are committed the translation is already
correct. For stores in the speculative queue addresses are potentially not correct but this fact will resolve if address
translation data structures are updated as those instructions will also automatically flush the whole speculative buffer.

2.1. OpenHW Group CVA6 User Manual 17

CVA6

Memory Management Unit (MMU) {#par:mmu}

Memory
Management Unit
18 Chapter 2. Organization of this Document

CVA6

The memory management unit (MMU) takes care of address translation (see) and memory accesses in general. Address
translation needs to be separately activated by writing the corresponding control and status register and switching to a
lower privilege mode than machine mode. As soon as address translation is enabled it will also handle page faults. The
MMU contains an ITLB, DTLB and hardware page table walker (HPTW). Although logically not really entangled -
the fetch interface is also routed through the MMU. In general the fetch and data interface are handled differently. They
only share the HPTW with each other (see .

There are mainly two fundamentally different paths through the MMU: one from the instruction fetch stage and the
other from the LSU. Lets begin with the instruction fetch interface: The IF stage makes a request to get the memory
content at a specific address. Instruction fetch will always ask for virtual addresses. Depending on whether the address
translation is enabled the MMU will either transparently let the request directly go to the I$ or do address translation.

In case address translation is activated, the request to the instruction cache is delayed until a valid translation can be
found. If no valid translation can be found the MMU will signal this with an exception. Furthermore, if an address
translation can be performed with a hit on the ITLB it is a purely combinational path. The TLB is implemented as a
fully set-associative caches made out of flops. This in turn means that the request path to memory is quite long and
may become critical quite easily.

If an exception occurred the exception is returned to the instruction fetch stage together with the valid signal and not
the grant signal. This has the implication that we need to support multiple out-standing transactions on the exception
path as well (see). The MMU has a dedicated buffer (FIFO) which stores those exceptions and returns them as soon
as the answer is valid.

The MMUs interface on the data memory side (D$) is entirely different. It has a simple request-response interfaces
guarded by handshaking signals. Either the load unit or the store unit will ask the MMU to perform address translation.
However the address translation process is not combinatorial as it is the case for the fetch interface. An additional
bank of registers delays the MMU’s answer (on a TLB hit) an additional cycle. As already mentioned in the previous
paragraph address translation is a quite critical process in terms of timing. The particular problem on the data interface
is the fact that the LSU needs to generate the address beforehand. Address generation involves another costly addition.
Together with address translation this path definitely becomes critical. As the data cache is virtually indexed and
physical tagged this additional cycle does not cost any loss in IPC. But, it makes the process of memory requests a little
bit more complicated as we might need to abort memory accesses because of exceptions. If an exception occurred on
a load request the load unit needs to kill the memory request it sent the cycle earlier. An excepting load (or store) will
never go to memory.

Both TLBs are fully set-associative and configurable in size. Also the application specifier ID (ASID) can be changed
in size. The ASID can prevent flushing of certain regions in the TLB (for example when switching applications). This
is currently not implemented.

Page Table Walker (PTW)

The purpose of a page table walker has already been introduced in . The page table walker listens on both ITLB and
DTLB for incoming translation requests. If it sees that either one of the requests is missing on the TLB it saves the
virtual address and starts its page table walk. If the page table walker encounters any error state it will throw a page
fault exception which in return is caught by the MMU and propagated to either the fetch interface or the LSU.

The page table walker gives precedence to DTLB misses. The page table walking process is described in more detail
in the RISC-V Privileged Architecture.

2.1. OpenHW Group CVA6 User Manual 19

CVA6

PMA/PMP Checks

The core supports PMA and PMP checks in physical mode as well as with virtual memory enabled. PMA checks are
performed only on the final access to the (translated) physical address. However, PMPs must be checked during the
page table walk as well. During a page walk, all memory access must pass the PMP rules.

The amount of entries is parametrizable under the ArianeCfg.NrPMPEntries parameter. However, the core only
supports granularity 8 (G=8). This simplifies the implementation since we do not have to worry about any unaligned
accesses. There are a total of three distinct PMP units in the design. They verify instruction accesses, data loads and
stores, and the page table walk respectively.

MMU Implementation Details

The MMU prioritizes instruction address translations to data address translations. The behavior of the MMU is de-
scribed in the following:

1. As soon as a request from the instruction fetch stage arrives, the ITLB checked for a cached entry (combinatorial
path). Upon a cache miss, the PTW is invoked.

2. The PTW will perform the page table walk in multiple cycles. During this walk, the PTW will update the content
of the ITLB. The MMU checks every cycle if a cache hit in the ITLB exists, and therefore, the page table walk
has concluded.

Multiplier

The multiplier contains a division and multiplication unit. Multiplication is performed in two cycles and is fully
pipelined (re-timing needed). The division is a simple serial divider which needs 64 cycles in the worst case.

CSR Buffer

The CSR buffer a functional unit which its only purpose is to store the address of the CSR register the instruction is
going to read/write. There are two reasons why we need to do this. The first reason is that an CSR instruction alters
the architectural state, hence this instruction has to be buffered and can only be executed as soon as the commit stage
decides to commit the instruction. The second reason is the way the scoreboard entry is structured: It has only one
result field but for any CSR instruction we need to keep the data we want to write and the address of the CSR which
this instruction is going to alter. In order to not clutter the scoreboard with some special case bit fields the CSR buffer
comes into play. It simply holds the address and if the CSR instruction is going to execute it will use the stored address.

The clear disadvantage is that with the buffer being just one element we can’t execute more than one CSR instruction
back to back without a pipeline stall. Since CSR instructions are quite rare this is not too much of a problem. Some
CSR instructions will cause a pipeline flush anyway.

2.1.7 Commit Stage

The commit stage is the last stage in the processor’s pipeline. Its purpose is to take incoming instruction and update
the architectural state. This includes writing CSR registers, committing stores and writing back data to the register file.
The golden rule is that no other pipeline stage is allowed to update the architectural state under any circumstances. If
it keeps an internal state it must be re-settable (e.g.: by a flush signal, see).

We can distinguish two categories of retiring instructions. The first category just write the architectural register file.
The second might as well write the register file but needs some further business logic to happen. At the time of this
writing the only two places where this is necessary it the store unit where the commit stage needs to tell the store unit

20 Chapter 2. Organization of this Document

CVA6

to actually commit the store to memory and the CSR buffer which needs to be freed as soon as the corresponding CSR
instruction retires.

In addition to retiring instructions the commit stage also manages the various exception sources. In particular at time
of commit exceptions can arise from three different sources. First an exception has occurred in any of the previous four
pipeline stages (only four as PC Gen can’t throw an exception). Second an exception happend during commit. The only
source where during commit an exception can happen is from the CS register file and from an interrupt.

To allow precise interrupts to happen they are considered during the commit only and associated with this particular
instruction. Because we need a particular PC to associate the interrupt with it, it can be the case that an interrupt needs
to be deferred until another valid instruction is in the commit stage.

Furthermore commit stage controls the overall stalling of the processor. If the halt signal is asserted it will not commit
any new instruction which will generate back-pressure and eventually stall the pipeline. Commit stage also communi-
cates heavily with the controller to execute fence instructions (cache flushes) and other pipeline re-sets.

2.1.8 CVA6 System on Chip (SoC)

Memory Map

Base Length Attributes Description
0x0000_0000 0x1000 EX Debug Module
0x0001_0000 0x10000 EX ROM
0x0200_0000 0xC0000 CLINT
0x0C00_0000 0x400_0000 PLIC
0x1000_0000 0x1000 UART
0x1800_0000 0x1000 Timer
0x2000_0000 0x80_0000 SPI
0x3000_0000 0x10000 Ethernet
0x4000_0000 0x1000 GPIO
0x8000_0000 0x4000_0000 EX, NI, C DRAM

(EX: Executable, NI: Non-idempotent, C: Cached)

Platform-Level Interrupt Controller (PLIC)

The specification of CVA6’s platform-level interrupt controller (PLIC) is aligned with the PLIC of SiFive’s FU540-
C000. It shares the same functionality and memory map and has the following interrupt sources:

Interrupt ID Source
1 UART
2 SPI
3 Ethernet
4 Timer 0 (OVF)
5 Timer 0 (CMP)
6 Timer 1 (OVF)
7 Timer 1 (CMP)
8 – 30 Reserved

2.1. OpenHW Group CVA6 User Manual 21

https://static.dev.sifive.com/FU540-C000-v1.0.pdf
https://static.dev.sifive.com/FU540-C000-v1.0.pdf

CVA6

2.1.9 CVA6 Testharness

ariane_testharness is the module where all the masters and slaves have been connected with the axi crossbar.There
are two masters and ten slaves in this module.Their names and interfaces have been mentioned in the table below.

| Slaves | Interfaces | Masters | Interfaces || ———– | ———– | ———– | ———– | | DRAM | master[0] | ariane |
slave[0] | | GPIO | master[1] | debug | slave[1] | | Ethernet | master[2] | | | | SPI | master[3] | | | | Timer | master[4] | | | |
UART | master[5] | | | | PLIC | master[6] | | | | CLINT | master[7] | | | | ROM | master[8] | | | | Debug | master[9] | | |

The following block diagram shows the connections of the slaves and masters in the ariane_testharness module.

ariane_testharness

Ariane

The ariane core is instantiated as i_ariane in ariane_testharness module. It is acting as a master in
ariane_testharness.The following is the diagram of the ariane module along with its inputs/outputs ports.

ariane

22 Chapter 2. Organization of this Document

CVA6

ipi, irq and time_irq are being sent to this module from the ariane_testharness module.The AXI request and
response signals that are being passed from the ariane_testharness to ariane module are the following:

.axi_req_o (axi_ariane_req),.axi_resp_i (axi_ariane_resp)

In the ariane_testharness module, axi_ariane_req and axi_ariane_resp structs are being linked with the
slave[0] (AXI_BUS interface) in a way that the information of axi_ariane_req is being passed to the slave[0]
and the information from the slave[0] is being passed to the axi_ariane_resp struct. The following compiler
directives are being used for this purpose.

AXI_ASSIGN_FROM_REQ(slave[0], axi_ariane_req) AXI_ASSIGN_TO_RESP(axi_ariane_resp,
slave[0])

Rvfi_o is the output of ariane and it will go into the rvfi_tracer module.

Debug

Master

axi_adapter is acting as a master for the debug module.The following is the diagram of the axi_adapter module
along with its signals.

axi_adapter

The AXI request and response that signals are being passed from the test_harness module are the following:

.axi_req_o (dm_axi_m_req).axi_resp_i (dm_axi_m_resp)

Slave[1] is the interface of AXI_BUS and it actually acts as a master for axi_protocol.

The dm_axi_m_req and dm_axi_m_resp are being linked with the slave[1] AXI_BUS interface in this way that the
requests signals of the dm_axi_m_req are being passed to the slave[1] and the response signals from the slave[1]
are being passed to the dm_axi_m_resp struct.

AXI_ASSIGN_FROM_REQ(slave[1], dm_axi_m_req) AXI_ASSIGN_TO_RESP(dm_axi_m_resp,
slave[1])

2.1. OpenHW Group CVA6 User Manual 23

CVA6

Slave

This is the memory of debug and axi2mem converter is used whenever a read or write request is made to memory by
the master.axi2mem module simply waits for the ar_valid or aw_valid of the master (actual slave) interface and then
passes the req_o, we_o, addr_o, be_o, user_o signals and data_o to the memory and will receive the data_i and user_i
from the memory.

axi2mem

The memory is has been instantiated in the dm_top module and the hierarchy is as follows:

dm_top_&_dm_mem

CLINT

Clint is a slave in this SoC. The signals of the clint module are as follows:

clint

ipi_o (inter-processing interrupt) and timer_irq_o (timer_interrupt request) are generated from the clint module
and are the inputs of the ariane core.This module interacts with the axi bus interface through the following assignments:

AXI_ASSIGN_TO_REQ(axi_clint_req, master[ariane_soc::CLINT])

This compiler directive is used to transfer the request signals of the master via the interface mentioned as
master[ariane_soc::CLINT] to the struct axi_clint_req.

AXI_ASSIGN_FROM_RESP(master[ariane_soc::CLINT], axi_clint_resp)

24 Chapter 2. Organization of this Document

CVA6

This compiler directive is used to assign the response of the slave (in this case clint module) from
theAxi_clint_resp struct to the interface master[ariane_soc::CLINT].

Bootrom

axi2mem module is used to communicate with bootrom module. The signals of this memory have been shown in the
diagram below:

bootrom

Bootrom is pre-initialized with ROM_SIZE = 186.

SRAM

The complete sequence through which a request to SRAM is transferred is as follows:

2.1. OpenHW Group CVA6 User Manual 25

CVA6

sequence

dram and dram_delayed are two AXI_BUS interfaces. The slave modport of AXI_BUS interface for Master[DRAM]
has been linked with axi_riscv_atomics module and the request of the master has been passed to dram interface
(another instantiation of interface of AXI_BUS). All this is for the exclusive accesses and no burst is supported in this
exclusive access.dram and dram_delayed interfaces have also been passed to axi_delayer_intf module as a slave
modport and master modport of the AXI_BUS interface, respectively. The axi_delayer_intf module is used to
introduce the delay.dram_delayed is also passed to the axi2mem module as a slave modport of AXI_BUS interface.
axi2memmodule with dram_delayed as an AXI_Bus interface will interact with SRAM.SRAM is a word addressable
memory with the signals as follows:

26 Chapter 2. Organization of this Document

CVA6

sram

GPIO

GPIO is not implemented, error slave has been added in place of it.

UART

There are two signals for the apb_uart module in the ariane_testharness, namely tx and rx for transmitting and
receiving the data.axi2apb_64_32, module has been used to convert the axi protocol five channel signals to a single
channel apb signals. The axi2apb_64_32 module has been used between AXI_BUS and apb_uart module.The
signals of the apb_uart module have been shown in the diagram below:

apb_uart

Only the signals related to the test_harness have been shown in the above diagram.

PLIC

PLIC is a slave in this SoC. The hiearchy through which the request is propagated to the plic_top module is as follows:

2.1. OpenHW Group CVA6 User Manual 27

CVA6

plic_hierarchy

axi2apb_64_32 has been used to convert all the plic axi signals into apb signals.apb_to_reg is used to assign the apb
signals to the reg_bus interface which basically communicates with the plic_top module. In apb_to_reg module,
the logical AND of psel and penable signals of apb makes the valid signal of reg_bus interface.The signals of the
plic_top have been shown below:

plic_top

Timer

The axi2apb_64_32 module has been used to convert all the timer axi signals into timer apb signals.The diagram of
the apb_timer is as follows.

apb_timer

28 Chapter 2. Organization of this Document

CVA6

The signals of apb protocol have been shown in the form of apb_timer_req and apb_timer_resp in the above
diagram.

Ethernet

Ethernet is a slave in this testharness.

Ethernet support has not been added in the ‘ariane_testharness’ at this time. For any read or write request from the
master to this module is returned with

"ethernet.b_resp = axi_pkg::RESP_SLVERR"

where,

"localparam RESP_SLVERR = 2'b10;" in axi_pkg

which shows "Slave error". It is used when the access has reached the slave successfully, but the slave wishes to
return an error condition to the originating master.”

SPI

SPI is a slave in this testharness. Support of the of SPI protocol is present in the SoC, but at this time it is turned off,
as the .spi_clk_o (),.spi_mosi (),.spi_miso () ,and .spi_ss () signals of SPI have been left open in
the ariane_testharnessmodule. Any read or write request from the master to this module is returned with "Slave
error".

2.1.10 Indices and tables

• genindex

• modindex

• search

2.1.11 Documentation

The documentation is re-generated on pushes to master. When contributing to the project please consider the [contri-
bution guide](https://github.com/openhwgroup/cva6/blob/master/CONTRIBUTING.md).

2.2 CVA6 Requirement Specification

Revision 1.0.1

2.2. CVA6 Requirement Specification 29

https://github.com/openhwgroup/cva6/blob/master/CONTRIBUTING.md

CVA6

2.2.1 License

Copyright 2022 OpenHW Group and Thales Copyright 2018 ETH Zürich and University of Bologna

SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1

Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file except in compliance
with the License, or, at your option, the Apache License version 2.0. You may obtain a copy of the License at https:
//solderpad.org/licenses/SHL-2.1/. Unless required by applicable law or agreed to in writing, any work distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing permissions and limitations
under the License.

2.2.2 Introduction

CVA6 is a RISC-V compatible application processor core that can be configured as a 32- or 64-bit core (RV32 or
RV64). It includes L1 caches, optional MMU, optional PMP and optional FPU.

It is an industrial evolution of ARIANE created by ETH Zürich and the University of Bologna. It is written in Sys-
temVerilog and maintained by the OpenHW Group.

This specification is organized as requirements that apply to the “Scope of the IP”.

The requirement list is to be approved by the OpenHW Group Technical Work Group (TWG), as well as its change
requests.

The specification will be complemented by a user’s guide.

Revision 1.0.0 refers to the product of the first CVA6 project led at OpenHW Group. It is a placeholder in case of future
evolutions after project freeze (PF gate).

A list of abbreviations is available at the end of this document.

2.2.3 Scope

Scope of the IP

The scope of the IP is the subsystem that is specified below and that will undergo verification with a 100% coverage
goal. In the verification plans, the scope of the IP can be broken down in several DUT (design under test).

The scope of the IP is the CVA6 hardware supporting all the features used in products based on CVA6.

CVA6 exists in two main configurations: CV64A6 and CV32A6. A requirement referring to CVA6 applies to both
configurations.

30 Chapter 2. Organization of this Document

https://solderpad.org/licenses/SHL-2.1/
https://solderpad.org/licenses/SHL-2.1/

CVA6

As displayed in the picture above, the IP comprises:

• The CVA6 core;

• L1 write-through cache;

• Optional FPU;

• Optional MMU;

• Optional PMP;

• CSR;

• Performance counters;

• AXI interface;

• Interface with the P-Mesh coherence system of OpenPiton.

These are not part of the IP (several solutions can be used):

• CLINT or PLIC Interrupt modules;

• Debug module (such as DTM);

• Support of L1 write-back cache (this might come later as an update).

In addition to these main configurations, several fine grain parameters are available.

Unless otherwise stated, an optional feature is controlled by a SystemVerilog parameter. If not selected, the optional
feature will not be present in the netlist after synthesis.

The reader’s attention is drawn to the difference between an optional feature (“. . . shall support as an option. . . ”) and a
desired goal (“. . . should support. . . ”, “. . . should reduce latency. . . ”).

These are not in the scope of this specification:

• SW layers, such as compiler and OSes (that can however be part of the OpenHW Group CVA6 project);

• SW emulation of RISC-V optional extensions (feasible but the scope of the IP is the core hardware);

• Other features included in the testbench (main memory, firmware, interconnect. . .), the verification coverage of
which will not be measured;

• The vector coprocessor (CV-VEC) that is planned to interface with CV64A6.

2.2. CVA6 Requirement Specification 31

CVA6

Initial Release

The CVA6 is highly configurable via SystemVerilog parameters. It is not practical to fully document and verify all
possible combinations of parameters, so a set of “viable IP configurations” has been defined. The full list of parameters
for this configuration will be detailed in the users’ guide.

Below is the configuration of the first release of the CVA6.

Release ID Target ISA XLEN FPU CV-X-IF MMU L1 D$ L1 I$
CV32A60X ASIC IMC 32 No Yes Sv32 None 16 kB

Possible Future Releases

Below is a proposed list of configurations that could undergo verification and their main parameters. The full list
of parameters for these configurations will be detailed in the users’ guide if and when these configurations are fully
verified.

Configuation ID Target ISA XLEN FPU CV-X-IF MMU L1 D$ L1 I$
cv32a6_imacf_sv32 FPGA IMACF 32 Yes TBD Sv32 32 kB 16 kB
cv32a6_imac_sv32 FPGA IMAC 32 No TBD Sv32 32 kB 16 kB
cv64a6_imacfd_sv39 ASIC IMACFD 64 Yes Yes Sv39 16 kB 16 kB
cv32a6_imac_sv0 ASIC IMAC 32 No Yes None None 4 kB

2.2.4 References

Applicable specifications

To ease the reading, the reference to these specifications can be implicit in the requirements below. For the sake of
precision, the requirements identify the versions of RISC-V extensions from these specifications.

[RVunpriv] “The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 20191213”, Editors
Andrew Waterman and Krste Asanović, RISC-V Foundation, December 13, 2019.

[RVpriv] “The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version 20211203”,
Editors Andrew Waterman, Krste Asanović and John Hauser, RISC-V Foundation, December 4, 2021.

[RVdbg] “RISC-V External Debug Support, Document Version 0.13.2”, Editors Tim Newsome and Megan Wachs,
RISC-V Foundation, March 22, 2019.

[RVcompat] “RISC-V Architectural Compatibility Test Framework”, https://github.com/riscv-non-isa/riscv-arch-test.

[AXI] AXI Specification, https://developer.arm.com/documentation/ihi0022/hc.

[CV-X-IF] Placeholder for the CV-X-IF coprocessor interface currently prepared at OpenHW Group; current version
in https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/.

[OpenPiton] “OpenPiton Microarchitecture Specification”, Princeton University, https://parallel.princeton.edu/
openpiton/docs/micro_arch.pdf.

32 Chapter 2. Organization of this Document

https://github.com/riscv-non-isa/riscv-arch-test
https://developer.arm.com/documentation/ihi0022/hc
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/
https://parallel.princeton.edu/openpiton/docs/micro_arch.pdf
https://parallel.princeton.edu/openpiton/docs/micro_arch.pdf

CVA6

Reference documents

[RVcmo] “RISC-V Base Cache Management Operation ISA Extensions, version 1.0-fd39d01, 2022-01-12”

[CLINT] Core-Local Interruptor (CLINT), “SiFive E31 Core Complex Manual v2p0”, chapter 6, https://static.dev.
sifive.com/SiFive-E31-Manual-v2p0.pdf

2.2.5 Functional requirements

General requirement

GEN-10CVA6 shall be fully compliant with RISC-V specifications [RVunpriv], [RVpriv] and [RVdbg] by im-
plementing all mandatory features for the set of extensions that are selected and by passing [RVcompat]
compatibility tests.

As the RISC-V specification leaves space for variations, this specification specificies some of these variations.

RISC-V standard instructions

To ease tracing to verification, the extensions have been split in independent requirements.

ISA-10 CV64A6 shall support RV64I base instruction set, ver-
sion 2.1.

ISA-20 CV32A6 shall support RV32I base instruction set, ver-
sion 2.1.

ISA-30 CVA6 shall support the M extension (integer multiply
and divide), version 2.0.

ISA-40 CVA6 shall support the A extension (atomic instruc-
tions), version 2.1.

ISA-50 CV32A6 shall support as an option the F extension
(single-precision floating-point), version 2.2.

ISA-60 CV64A6 shall support as an option the F and D exten-
sions (single- and double-precision floating-point), ver-
sion 2.2.

ISA-70 CV64A6 shall support as an option the F exten-
sion (single-precision without double-precision floating-
point), version 2.2.

ISA-80 CVA6 shall support as an option the C extension (com-
pressed instructions), version 2.0.

ISA-90 CVA6 shall support the Zicsr extension (CSR instruc-
tions), version 2.0.

ISA-100 CVA6 shall support the Zifencei extension, version 2.0.
ISA-110

As an option, the duration of instructions shall be
independent from the operand values.
Unlike other options, this one can be design-time
(selected before compiling the RTL) or run-time
(selected through a register).

2.2. CVA6 Requirement Specification 33

https://static.dev.sifive.com/SiFive-E31-Manual-v2p0.pdf
https://static.dev.sifive.com/SiFive-E31-Manual-v2p0.pdf

CVA6

Note to ISA-60 and ISA-70: CV64A6 cannot support the D extension with the F extension.

Note to ISA-110: In the current design, the duration of the division is data-dependent, which can be a security issue.

Privileges and virtual memory

The MMU includes a TLB and a hardware PTW.

PVL-10 CVA6 shall support machine, supervisor, user and debug privilege modes.
PVL-20 CV64A6 shall support as an option the Sv39 virtual memory, version 1.11.
PVL-30 CV32A6 shall support as an option the Sv32 virtual memory version 1.11.
PVL-40 CVA6 instances that do not feature virtual memory shall support the Bare mode.
PVL-50 CVA6 shall feature PMP (physical memory protection) as an option.
PVL-60 CV64A6 shall support as an option the H extension (hypervisor) version 1.0.

CSR

There are no requirements related to CSR as they derive from other requirements, such as PVL-10, PVL-60. . . Details
of CSRs will be available in the user’s manual.

Performance counters

Performance counters are important features for safety-critical applications.

34 Chapter 2. Organization of this Document

CVA6

HPM-10 CVA6 shall implement the 64-bit mcycle and
minstret standard performance counters (includ-
ing their upper 32 bits counterparts mcycleh and
minstreth in CV32A6) as per [RVpriv].

HPM-20 CVA6 shall implement as an option six generic 64-
bit performance counters located in hpmcounter3 to
hpmcounter8 (including their upper 32 bits counter-
parts in CV32A6: hpmcounter3h to hpmcounter8h).

HPM-30 Each of the six generic performance counters shall be
able to count events from one of these sources:

1. L1 I-Cache misses
2. L1 D-Cache misses
3. ITLB misses
4. DTLB misses
5. Load accesses
6. Store accesses
7. Exceptions
8. Exception handler returns
9. Branch instructions

10. Branch mispredicts
11. Branch exceptions
12. Call
13. Return
14. MSB Full
15. Instruction fetch Empty
16. L1 I-Cache accesses
17. L1 D-Cache accesses
18. L1$ line invalidation
19. I-TLB flush
20. Integer instructions
21. Floating point instructions
22. Pipeline bubbles

HPM-40 The source of events counted by the six generic perfor-
mance counters shall be selected by the mhpmevent3 to
mhpmevent8 CSRs.

HPM-50 CVA6 shall allow the supervisor access of performance
counters through enabling of mcounteren CSR.

HPM-60 CVA6 shall allow the user access of performance coun-
ters through enabling of scounteren CSR.

HPM-70 CVA6 shall implement the mcountinhibit counter-
inhibit register.

HPM-80 CVA6 shall implement the read-only cycle, instret,
hpmcounter3 to hpmcounter8 access to counters (and
their upper 32-bit counterparts in CV32A6).

The user’s manual will detail the list of counters, events and related controls.

2.2. CVA6 Requirement Specification 35

CVA6

Cache requirements

Caches increase the performance of the processor with regard to memory accesses. Most of their added value for the
IP is specified through performance requirements in another section. Here below are specific requirements for these
caches.

The project would like to adopt the recently ratified [RVcmo] specification. The analysis yet needs to be performed
and will likely lead to an evolution of this specification.

L1 write-through data cache

In the requirements below, L1WTD refers to the L1 write-through data cache that is part of the CVA6.

The first two requirements express the write-through feature. Some requirements are useful for security- and safety-
critical applications where a high level of timing predictability is needed.

L1W-10 L1WTD shall reflect all write accesses (stores) by the
CVA6 core to the external memory within an upper-
bounded number of cycles. The upper-bound is fixed
but not specified here.

L1W-20 L1WTD shall not change the order of write accesses to
the external memory with respect to the order of write
accesses (stores) received from the CVA6 core.

L1W-30 L1WTD should offer the following size/ways configura-
tions:

• 0 kbyte (no cache),
• 4 kbytes (4 or 8 ways),
• 8 kbytes (4, 8 or 16 ways),
• 16 kbytes (4, 8 or 16 ways),
• 32 kbytes (8 or 16 ways).

L1W-40 L1WTD shall support datasize extension to store EDC,
ECC or other information. The numbers of bits of the
extension is defined by a compile-time parameter.

L1W-50 To interface with the P-Mesh coherence system of Open-
Piton, L1WTD shall have a line invalidate external com-
mand that invalidates the content of a line upon request.

L1W-60 Some physical memory regions shall be configurable as
not L1WTD cacheable at design time.

L1W-70 It shall be possible to invalidate L1WTD content with
the FENCE.T command.

L1W-80 The replacement policy of L1WTD shall be LFSR
(pseudo-random) or LRU (least recently used).

L1W-90 L1WTD should offer a feature to transform cache ways
into a scratchpad. Alternatively, this requirement can be
realized with a separate scratchpad.

L1W-100 A custom CSR shall allow to disable or enable L1WTD.

Cache counters are defined in the performance counters.

32 kbytes & 4 ways is not feasible with the current architecture. Other size/ways configurations may be implemented
in the design.

The design will support one replacement policy allowed by L1W-80.

36 Chapter 2. Organization of this Document

CVA6

L1 Instruction cache

In the requirements below, L1I refers to the L1 instruction cache that is part of the CVA6.

Some requirements are useful for security- and safety-critical applications where a high level of timing predictability
is needed.

L1I-10 L1I should offer the following size/ways configurations:
• 4 kbytes: 3, 4 or 8 ways,
• 8 kbytes: 4, 8, or 16 ways,
• 16 kbytes: 4, 8 or 16 ways,
• 32 kbytes: 8 or 16 ways.

L1I-20 L1I shall support datasize extension to store EDC, ECC
or other information. The numbers of bits of the exten-
sion is defined by a compile-time parameter.

L1I-30 To interface with the P-Mesh coherence system of Open-
Piton, L1I shall have a line invalidate external command
that invalidates the content of a line upon request.

L1I-40 It shall be possible to invalidate L1I content with the
FENCE.T command.

L1I-50 The replacement policy of L1I shall be LFSR (pseudo-
random) or LRU (least recently used).

L1I-60 L1I should offer a feature to transform cache ways into
a scratchpad. Alternatively, this requirement can be re-
alized with a separate scratchpad.

L1I-70 A custom CSR shall allow to disable or enable L1I.

Cache counters are defined in the performance counters section.

32 kbytes & 4 ways is not feasible with the current architecture. Other size/ways configurations may be implemented
in the design.

The design will support one replacement policy allowed by L1I-50.

FENCE.T custom instruction

There are discussions within RISC-V International to define a specification for FENCE.T. The specification below
reflects the situation prior to this RISC-V specification, based on Nils Wistoff’s work. If a RISC-V specification is
ratified, the CVA6 specification will likely switch to it.

FET-10 CVA6 shall support the FENCE.T instruction that ensures that the execution time of subsequent instructions
is unrelated with predecessor instructions.

FET-20 FENCE.T shall be available in all privilege modes (machine, supervisor, user and hypervisor if present).

FENCE.T goes beyond FENCE and FENCE.I as it clears L1 caches, TLB, branch predictors. . . It is a countermeasure
for SPECTRE-like attacks. It is also useful in safety-critical applications to increase execution time predictability.

It is not yet decided if the FENCE.T instruction arguments can be used to select a subset of microarchitecture features
that will be cleared. The list of arguments, if any, will be detailed in the user’s guide.

Anticipation of verification: It can be cumbersome to prove the timing decorrelation as expressed in the requirement
with digital simulations. We can simulate the microarchitecture features and explain how they satisfy the requirement
as Nils Wistoff’s work demonstrated.

2.2. CVA6 Requirement Specification 37

CVA6

2.2.6 PPA targets

These PPA targets will likely be updated when performance monitoring is integrated in the continuous integration flow.

PPA-10CVA6 should be resource-optimized on FPGA and ASIC targets.
PPA-20CVA6 should deliver more than 2.1 CoreMark/MHz.
PPA-30CV32A6 should run at more than 150 MHz in the cv32a6_imac_sv32 configuration on Kintex 7 FPGA

technology, commercial -2 speed grade.
PPA-40CV64A6 should run at more than 900 MHz in the cv64a6_imacfd_sv39 configuration on 28FDSOI tech-

nology in the worst case frequency corner with the fastest threshold voltage.
PPA-50TBD: Placeholder for single-precision floating performance per MHz.
PPA-60TBD: Placeholder for double-precision floating performance per MHz.

2.2.7 Interface requirements

Memory bus

MEM-10CVA6 memory interface shall comply with AXI5 specification including the Atomic_Transactions property
support as defined in [AXI] section E1.1.

MEM-20CVA6 AXI memory interface shall feature user bit extensions on the data bus (WUSER and RUSER as per
[AXI]) in connection with the L1I and L1WTD datasize extensions, with a number of user bits greater or
equal to 0.

The interface complies with AXI4. However, Atomic_Transactions is only defined in AXI5. For the sake of clarity, we
do not use the AXI5-Lite interface.

Debug

DBG-10 CVA6 shall implement both the Abstracted Command and Execution based features outlined in chapter
4 of [RVdbg].

In addition, there can be an external debug module, not in the scope of the IP.

Interrupts

IRQ-10 CVA6 shall implement interrupt handling registers as per the RISC-V privilege specification and interface
with a CLINT implementation.

38 Chapter 2. Organization of this Document

CVA6

Coprocessor interface

XIF-10 To extend the supported instructions, CVA6 shall have a coprocessor interface that supports the “Issue”,
“Commit” and “Result” interfaces of the [CV-X-IF] specification.

The goal is to have a compatible interface between CORE-V cores (CVA6, CV32E40X. . .). The feasibility still needs
to be confirmed; including the speculative execution.

CVA6 can interface with several coprocessors simultaneously through a specific external feature implemented on the
CV-X-IF interface.

Multi-core interface

TRI-10 CVA6 shall have the Transaction-Response Interface (TRI) needed to interface with the P-Mesh coherence
system of OpenPiton, according to [OpenPiton].

2.2.8 Design rules

As different teams have different design rules and to ease the integration in FPGA and ASIC design flows:

RUL-10 CVA6 should have a configurable reset signal: synchronous/asynchronous, active on high or low levels.
RUL-20 CVA6 shall be a super-synchronous design with a single clock input.
RUL-30 CVA6 should not include multi-cycle paths.
RUL-40 CVA6 should not include technology-dependent blocks.

If technology-dependent blocks are used, e.g. to improve PPA on certain targets, the equivalent technology-independent
block should be available. Parameters can be used to select between the implementations.

2.2.9 List of abbreviations

ASIC: Application Specific Integrated Circuit
CSR: Control and Status Register
D$: Data cache
DTM: Debug Transport Module
DUT: Design Under Test
DV: Design Verification
ECC: Error Correction Code
EDC: Error Detection Code
FPGA: Field Programmable Gate Array
FPU: Floating Point Unit
I$: Instruction cache
IP: Intellectual Property block
ISA: Instruction Set Architecture
kB: kilo-bytes
L1: Level 1 cache
L1I: Level 1 Instruction cache
L1WTD: Level 1 Write-Through data cache

2.2. CVA6 Requirement Specification 39

CVA6

LFSR: Linear Feedback Shift Register
LRU: Least Recently Used
MMU: Memory Management Unit
OS: Operating System
PF: Project Freeze
PPA: Power Performance Area
PMP: Physical Memory Protection
PTW: Page Table Walk
RW: Read Write
SW: Software
TLB: Translation Lookaside Buffer
TWG: Technical Work Group
WB: Write-Back
WT: Write-Through

2.3 CV32A6 Design Document

2.3.1 Introduction

The OpenHW Group uses semantic versioning to describe the release status of its IP. This document describes v0.1.0
of the CV32A6. This is not intended to be a formal release of CVA6. Currently, the first planned release of CVA6 is
the CV32A6 v0.2.0.

CVA6 is a 6-stage in-order and single issue processor core which implements the RISC-V instruction set. CVA6 can
be configured as a 32- or 64-bit core (RV32 or RV64), called CV32A6 or CV64A6. This document describes an initial
version (v0.1.0) of the CV32A6 processor configuration.

The objective of this document is to provide enough information to allow the RTL modification (by designers) and the
RTL verification (by verificators). This document is not dedicated to CVA6 users looking for information to develop
software like instructions or registers.

The CVA6 architecture is illustrated in the following figure extracted from a paper written by F.Zaruba and L.Benini.

License

Copyright 2022 Thales
Copyright 2018 ETH Zürich and University of Bologna
SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file except in compliance
with the License, or, at your option, the Apache License version 2.0. You may obtain a copy of the License at
https://solderpad.org/licenses/SHL-2.1/.
Unless required by applicable law or agreed to in writing, any work distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

40 Chapter 2. Organization of this Document

https://semver.org/
https://solderpad.org/licenses/SHL-2.1/

CVA6

Fig. 1: CVA6 Architecture

2.3. CV32A6 Design Document 41

CVA6

Standards Compliance

To ease the reading, the reference to these specifications can be implicit in the requirements below. For the sake of
precision, the requirements identify the versions of RISC-V extensions from these specifications.

• [CVA6req] “CVA6 requirement specification”, https://github.com/openhwgroup/cva6/blob/master/docs/
specifications/cva6_requirement_specification.rst, HASH#767c465.

• [RVunpriv] “The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 20191213”,
Editors Andrew Waterman and Krste Asanović, RISC-V Foundation, December 13, 2019.

• [RVpriv] “The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version
20211203”, Editors Andrew Waterman, Krste Asanović and John Hauser, RISC-V Foundation, December 4,
2021.

• [RVdbg] “RISC-V External Debug Support, Document Version 0.13.2”, Editors Tim Newsome and Megan
Wachs, RISC-V Foundation, March 22, 2019.

• [RVcompat] “RISC-V Architectural Compatibility Test Framework”, https://github.com/riscv-non-isa/
riscv-arch-test.

• [AXI] AXI Specification, https://developer.arm.com/documentation/ihi0022/hc.

• [CV-X-IF] Placeholder for the CV-X-IF coprocessor interface currently prepared at OpenHW Group; current
version in https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/.

• [OpenPiton] “OpenPiton Microarchitecture Specification”, Princeton University, https://parallel.princeton.edu/
openpiton/docs/micro_arch.pdf.

CV32A6 is a standards-compliant 32-bit processor fully compliant with RISC-V specifications: [RVunpriv], [RVpriv]
and [RVdbg] and passes [RVcompat] compatibility tests, as requested by [GEN-10] in [CVA6req].

Documentation framework

The framework of this document is inspired by the Common Criteria. The Common Criteria for Information Tech-
nology Security Evaluation (referred to as Common Criteria or CC) is an international standard (ISO/IEC 15408) for
computer security certification.

Description of the framework:

• Processor is split into module corresponding to the main modules of the design

• Modules can contain several modules

• Each module is described in a chapter, which contains the following subchapters: Description, Functionalities,
Architecture and Modules and Registers (if any)

• The subchapter Description describes the main features of the submodule, the interconnections between the
current module and the others and the inputs/outputs interface.

• The subchapter Functionality lists in details the module functionalities. Please avoid using the RTL signal names
to explain the functionalities.

• The subchapter Architecture and Modules provides a drawing to present the module hierarchy, then the function-
alities covered by the module

• The subchapter Registers specifies the module registers if any

42 Chapter 2. Organization of this Document

https://github.com/openhwgroup/cva6/blob/master/docs/specifications/cva6_requirement_specification.rst
https://github.com/openhwgroup/cva6/blob/master/docs/specifications/cva6_requirement_specification.rst
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/riscv-non-isa/riscv-arch-test
https://developer.arm.com/documentation/ihi0022/hc
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/
https://parallel.princeton.edu/openpiton/docs/micro_arch.pdf
https://parallel.princeton.edu/openpiton/docs/micro_arch.pdf

CVA6

Contributors

Jean-Roch Coulon (jean-roch.coulon@thalesgroup.com)
Ayoub Jalali (ayoub.jalali@external.thalesgroup.com)
Alae Eddine Ezzejjari (alae-eddine.ez-zejjari@external.thalesgroup.com)

[TO BE COMPLETED]

2.3.2 CV32A6 Subsystem

The CV32A6 v0.1.0 is a subsystem composed of the modules and protocol interfaces as illustrated CV32A6 v0.1.0
modules The processor is a Harvard-based modern architecture. Instructions are issued in-order through the DECODE
stage and executed out-of-order but committed in-order. The processor is Single issue, that means that at maximum
one instruction per cycle can be issued to the EXECUTE stage.

The CV32A6 implements a 6-stage pipeline composed of PC Generation, Instruction Detch, Instruction Decode, Issue
stage, Execute stage and Commit stage. At least 6 cycles are needed to execute one instruction.

Instantiation

Table 1: CV32A6 v0.1.0 parameterization
Parameter Type Value Description
ArianeCfg ariane_pkg::ariane_cfg_t ariane_pkg::v0.1.0_Config CVA6 v0.1.0 configuration

Table 2: CV32A6 v0.1.0 interface signals
Signal IO Type Description
clk_i in logic subsystem clock
rst_ni in logic Asynchronous reset active low
boot_addr_i in logic[VLEN-1:0] Reset boot address
hart_id_i in logic[XLEN-1:0] Hart id in a multicore environment (reflected in a CSR)
irq_i in logic[1:0] Level sensitive IR lines, mip & sip (async)
ipi_i in logic Inter-processor interrupts (async)
time_irq_i in logic Timer interrupt in (async)
debug_req_i in logic Debug request (async)
rvfi_o out trace_port_t RISC-V Formal Interface port (RVFI)
cvxif_req_o out cvxif_req_t Coprocessor Interface request interface port (CV-X-IF)
cvxif_resp_i in cvxif_resp_t Coprocessor Interface response interface port (CV-X-IF)
axi_req_o out req_t AXI master request interface port
axi_resp_i in resp_t AXI master response interface port

2.3. CV32A6 Design Document 43

mailto:jean-roch.coulon@thalesgroup.com
mailto:ayoub.jalali@external.thalesgroup.com
mailto:alae-eddine.ez-zejjari@external.thalesgroup.com

CVA6

Functionality

CV32A6 v0.1.0 implements a configuration which allows to connect coprocessor through CV-X-IF coprocessor inter-
face, but the lack of MMU, A extension and data cache prevent from executing Linux.

Table 3: CV32A6 v0.1.0 Standard Configuration
Standard Extension Specification Configurability
I: RV32i Base Integer Instruction Set [RVunpriv] ON
C: Standard Extension for Compressed Instructions [RVunpriv] ON
M: Standard Extension for Integer Multiplication and Division [RVunpriv] ON
A: Standard Extension for Atomic transaction [RVunpriv] OFF
F and D: Single and Double Precision Floating-Point [RVunpriv] OFF
Zicount: Performance Counters [RVunpriv] OFF
Zicsr: Control and Status Register Instructions [RVpriv] ON
Zifencei: Instruction-Fetch Fence [RVunpriv] ON
Privilege: Standard privilege modes M, S and U [RVpriv] ON
SV39, SV32, SV0: MMU capability [RVpriv] OFF
PMP: Memory Protection Unit [RVpriv] OFF
CSR: Control and Status Registers [RVpriv] ON
AXI: AXI interface [CV-X-IF] ON
TRI: Translation Response Interface (TRI) [OpenPiton] OFF

Table 4: CV32A6 v0.1.0 Micro-Architecture Configuration
Micro-architecture Specification Configurability
I$: Instruction cache current spec ON
D$: Data cache current spec OFF
Rename: register Renaming current spec OFF
Double Commit: out of order pipeline execute stage current spec ON
BP: Branch Prediction current spec ON with no info storage

CVA6 memory interface complies with AXI5 specification including the Atomic_Transactions property support as
defined in [AXI] section E1.1.

CVA6 coprocessor interface complies with CV-X-IF protocol specification as defined in [CV-X-IF].

The CV32A6 v0.1.0 core is fully synthesizable. It has been designed mainly for ASIC designs, but FPGA synthesis is
supported as well.

For ASIC synthesis, the whole design is completely synchronous and uses positive-edge triggered flip-flops. The core
occupies an area of about 80 kGE. The clock frequency can be more than 1GHz depending of technology.

Architecture and Modules

The CV32A6 v0.1.0 subsystem is composed of 8 modules.

Connections between modules are illustrated in the following block diagram. FRONTEND, DECODE, ISSUE, EX-
ECUTE, COMMIT and CONTROLLER are part of the pipeline. And CACHES implements the instruction and data
caches and CSRFILE contains registers.

44 Chapter 2. Organization of this Document

CVA6

Fig. 2: CV32A6 v0.1.0 modules

Fig. 3: CV32A6 v0.1.0 pipeline and modules

2.3. CV32A6 Design Document 45

CVA6

2.3.3 FRONTEND Module

Description

The FRONTEND module implements two first stages of the cva6 pipeline, PC gen and Fetch stages.

PC gen stage is responsible for generating the next program counter hosting a Branch Target Buffer (BTB) a Branch
History Table (BHT) and a Return Address Stack (RAS) to speculate on the branch target address.

Fetch stage requests data to the CACHE module, realigns the data to store them in instruction queue and transmits
the instructions to the DECODE module. FRONTEND can fetch up to 2 instructions per cycles when C extension
instructions is used, but as instruction queue limits the data rate, up to one instruction per cycle can be sent to DECODE.

The module is connected to:

• CACHES module provides fethed instructions to FRONTEND.

• DECODE module receives instructions from FRONTEND.

• CONTROLLER module can flush FRONTEND PC gen stage

• EXECUTE, CONTROLLER, CSR and COMMIT modules triggers PC jumping due to a branch mispredict, an
exception, a return from exception, a debug entry or pipeline flush. They provides related PC next value.

• CSR module states about debug mode.

46 Chapter 2. Organization of this Document

CVA6

Table 5: FRONTEND interface signals
Signal IO connection Type Description
clk_i in SUBSYS-

TEM
logic Subsystem Clock

rst_ni in SUBSYS-
TEM

logic Asynchronous reset active low

debug_mode_i in CSR logic Debug mode state
flush_i in CON-

TROLLER
logic Fetch flush request

flush_bp_i in tied at zero logic flush branch prediction
boot_addr_i in SUBSYS-

TEM
logic[VLEN-
1:0]

Next PC when reset

resolved_branch_i in EXECUTE bp_resolve_t mispredict event and next PC
eret_i in CSR logic Return from exception event
epc_i in CSR logic[VLEN-

1:0]
Next PC when returning from exception

ex_valid_i in COMMIT logic Exception event
trap_vector_base_iin CSR logic[VLEN-

1:0]
Next PC when jumping into exception

set_pc_commit_i in CON-
TROLLER

logic Set the PC coming from COMMIT as next PC

pc_commit_i in COMMIT logic[VLEN-
1:0]

Next PC when flushing pipeline

set_debug_pc_i in CSR logic Debug event
icache_dreq_o out CACHES icache_dreq_i_t Handshake between CACHE and FRONTEND

(fetch)
icache_dreq_i in CACHES icache_dreq_o_t Handshake between CACHE and FRONTEND

(fetch)
fetch_entry_o out DECODE fetch_entry_t Handshake’s data between FRONTEND (fetch) and

DECODE
fetch_entry_valid_oout DECODE logic Handshake’s valid between FRONTEND (fetch)

and DECODE
fetch_entry_ready_iin DECODE logic Handshake’s ready between FRONTEND (fetch)

and DECODE

Functionality

PC Generation stage

PC gen generates the next program counter. The next PC can originate from the following sources (listed in order of
precedence):

• Reset state: At reset, the PC is assigned to the boot address.

• Branch Predict: Fetched instruction is predecoded thanks to instr_scan submodule. When instruction is a
control flow, three cases need to be considered:

– 1) If instruction is a JALR and BTB (Branch Target Buffer) returns a valid address, next PC is predicted
by BTB. Else JALR is not considered as a control flow instruction, which will generate a mispredict.

– 2) If instruction is a branch and BTH (Branch History table) returns a valid address, next PC is predicted
by BHT. Else branch is not considered as an control flow instruction, which will generate a mispredict
when branch is taken.

2.3. CV32A6 Design Document 47

CVA6

– 3) If instruction is a RET and RAS (Return Address Stack) returns a valid address and RET has already
been consummed by instruction queue. Else RET is considered as a control flow instruction but next
PC is not predicted. A mispredict wil be generated.

Then the PC gen informs the Fetch stage that it performed a prediction on the PC. In CV32A6 v0.1.0, Branch
Prediction is simplified: no information is stored in BTB, BHT and RAS. JALR, branch and RET instructions are
not considered as control flow instruction and will generates mispredict.

• Default: PC + 4 is fetched. PC Gen always fetches on a word boundary (32-bit). Compressed instructions are
handled by fetch stage.

• Mispredict: When a branch prediction is mispredicted, the EXECUTE feedbacks a misprediction. This can
either be a ‘real’ mis-prediction or a branch which was not recognized as one. In any case we need to correct our
action and start fetching from the correct address.

• Replay instruction fetch: When the instruction queue is full, the instr_queue submodule asks the fetch replay
and provides the address to be replayed.

• Return from environment call: When CSR asks a return from an environment call, the PC is assigned to the
successive PC to the one stored in the CSR [m-s]epc register.

• Exception/Interrupt: If an exception (or interrupt, which is in the context of RISC-V subsystems quite similar) is
triggered by the COMMIT, the next PC Gen is assigned to the CSR trap vector base address. The trap vector base
address can be different depending on whether the exception traps to S-Mode or M-Mode (user mode exceptions
are currently not supported). It is the purpose of the CSR Unit to figure out where to trap to and present the
correct address to PC Gen.

• Pipeline Flush: When a CSR with side-effects gets written the whole pipeline is flushed by CONTROLLER
and FRONTEND starts fetching from the next instruction again in order to take the up-dated information into
account (for example virtual memory base pointer changes). The PC related to the flush action is provided by
the COMMIT. Moreover flush is also transmitted to the CACHES through the next fetch CACHES access and
instruction queue is reset.

• Debug: Debug has the highest order of precedence as it can interrupt any control flow requests. It also the only
source of control flow change which can actually happen simultaneously to any other of the forced control flow
changes. The debug jump is requested by CSR. The address to be jumped into is HW coded. This debug feature
is not supported by CV32A6 v0.1.0.

All program counters are logical addressed. If the logical to physical mapping changes a fence.vm instruction should
used to flush the pipeline and TLBs (MMU is not enabled in CV32A6 v0.1.0).

Fetch Stage

Fetch stage controls by handshake protocol the CACHE module. Fetched data are 32-bit block with word aligned
address. A granted fetch is realigned into instr_realign submodule to produce instructions. Then instructions are
pushed into an internal instruction FIFO called instruction queue (instr_queue submodule). This submodule stores the
instructions and related information which allow to identify the outstanding transactions. In the case CONTROLLER
decides to flush the instruction queue, the outstanding transactions are discarded.

The Fetch stage asks the MMU (MMU is not enabled in CV32A6 v0.1.0) to translate the requested address.

Memory and MMU (MMU is not enabled in CV32A6 v0.1.0) can feedback potential exceptions generated by the mem-
ory fetch request. They can be bus errors, invalid accesses or instruction page faults.

48 Chapter 2. Organization of this Document

CVA6

Architecture and Submodules

Fig. 4: FRONTEND submodules

Instr_realign submodule

Table 6: instr_realign interface signals
Signal IO connection Type Description
clk_i in SUBSYSTEM logic Subystem Clock
rst_ni in SUBSYSTEM logic Asynchronous reset active

low
flush_i in FRONTEND logic Instr_align Flush
valid_i in CACHES (reg) logic 32-bit block is valid
address_i in CACHES (reg) logic[VLEN-1:0] 32-bit block address
data_i in CACHES (reg) logic[31:0] 32-bit block
valid_o out FRONTEND logic[1:0] instruction is valid
addr_o out FRONTEND logic[1:0][VLEN-

1:0]
Instruction address

instr_o out instr_scan, in-
str_queue

logic[1:0][31:0] Instruction

serving_unaligned_o out FRONTEND logic Instruction is unaligned

The 32-bit aligned block coming from the CACHE module enters the instr_realign submodule. This submodule extracts
the instructions from the 32-bit blocks, up to two instructions because it is possible to fetch two instructions when C
extension is used. If the instructions are not compressed, it is possible that the instruction is not aligned on the block size
but rather interleaved with two cache blocks. In that case, two cache accesses are needed. The instr_realign submodule
provides at maximum one instruction per cycle. Not complete instruction is stored in instr_realign submodule before
being provided in the next cycles.

In case of mispredict, flush, replay or branch predict, the instr_realign is re-initialized, the internal register storing the
instruction alignment state is reset.

2.3. CV32A6 Design Document 49

CVA6

Instr_queue submodule

Table 7: instr_realign interface signals
Signal IO connection Type Description
clk_i in SUBSYS-

TEM
logic Subystem Clock

rst_ni in SUBSYS-
TEM

logic Asynchronous reset active low

flush_i in CON-
TROLLER

logic Fetch flush request

valid_i in in-
str_realign

logic[1:0] Instruction is valid

instr_i in in-
str_realign

logic[1:0][31:0] Instruction

addr_i in in-
str_realign

logic[1:0][VLEN-
1:0]

Instruction address

predict_address_iin FRON-
TEND

logic[VLEN-
1:0]

Instruction predict address

cf_type_i in FRON-
TEND

logic[1:0] Instruction control flow type

ready_o out CACHES logic Handshake’s ready between CACHE and FRON-
TEND (fetch stage)

consumed_o out FRON-
TEND

logic[1:0] Indicates instructions consummed, that is to say
popped by DECODE

exception_i in CACHES
(reg)

logic Exception

exception_addr_i in CACHES
(reg)

logic[VLEN-
1:0]

Exception address

replay_o out FRON-
TEND

logic Replay instruction because one of the FIFO was al-
ready full

replay_addr_o out FRON-
TEND

logic[VLEN-
1:0]

Address at which to replay the fetch

fetch_entry_o out DECODE fetch_entry_t Handshake’s data between FRONTEND (fetch
stage) and DECODE

fetch_entry_valid_oout DECODE logic Handshake’s valid between FRONTEND (fetch
stage) and DECODE

fetch_entry_ready_iin DECODE logic Handshake’s ready between FRONTEND (fetch
stage) and DECODE

The instr_queue receives 32bit block from CACHES to create a valid stream of instructions to be decoded (by DE-
CODE), to be issued (by ISSUE) and executed (by EXECUTE). FRONTEND pushes in FIFO to store the instructions
and related information needed in case of mispredict or exception: instructions, instruction control flow type, excep-
tion, exception address and predicted address. DECODE pops them when decode stage is ready and indicates to the
FRONTEND the instruction has been consummed.

The instruction queue contains max 4 instructions.

In instruction queue, exception can only correspond to page-fault exception.

If the instruction queue is full, a replay request is sent to inform the fetch mechanism to replay the fetch.

The instruction queue can be flushed by CONTROLLER.

50 Chapter 2. Organization of this Document

CVA6

Instr_scan submodule

Table 8: instr_scan interface signals
Signal IO Connection Type Description
instr_i in instr_realign logic[31:0] Instruction to be predecoded
rvi_return_o out FRONTEND logic Return instruction
rvi_call_o out FRONTEND logic JAL instruction
rvi_branch_o out FRONTEND logic Branch instruction
rvi_jalr_o out FRONTEND logic JALR instruction
rvi_jump_o out FRONTEND logic unconditional jump instruction
rvi_imm_o out FRONTEND logic[VLEN-1:0] Instruction immediat
rvc_branch_o out FRONTEND logic Branch compressed instruction
rvc_jump_o out FRONTEND logic unconditional jump compressed instruction
rvc_jr_o out FRONTEND logic JR compressed instruction
rvc_return_o out FRONTEND logic Return compressed instruction
rvc_jalr_o out FRONTEND logic JALR compressed instruction
rvc_call_o out FRONTEND logic JAL compressed instruction
rvc_imm_o out FRONTEND logic[VLEN-1:0] Instruction compressed immediat

The instr_scan submodule pre-decodes the fetched instructions, instructions could be compressed or not. The outputs
are used by the branch prediction feature. The instr_scan submodule tells if the instruction is compressed and provides
the intruction type: branch, jump, return, jalr, imm, call or others.

BHT (Branch History Table) submodule

Table 9: BHT interface signals
Signal IO Connection Type Description
clk_i in SUBSYSTEM logic Subystem clock
rst_ni in SUBSYSTEM logic Asynchronous reset active low
flush_i in tied at zero logic Flush request
debug_mode_i in CSR logic Debug mode state
vpc_i in CACHES (reg) logic[VLEN-1:0] Virtual PC
bht_update_i in EXECUTE bht_update_t Update btb with resolved address
bht_prediction_o out FRONTEND bht_prediction_t Prediction from bht

When a branch instruction is resolved by the EXECUTE, the relative information is stored in the Branch History Table.

The information is stored in a 1024 entry table.

The Branch History table is a two-bit saturation counter that takes the virtual address of the current fetched instruction
by the CACHE. It states whether the current branch request should be taken or not. The two bit counter is updated by
the successive execution of the current instructions as shown in the following figure.

The BHT is not updated if processor is in debug mode.

When a branch instruction is pre-decoded by instr_scan submodule, the BHT informs whether the PC address is in the
BHT. In this case, the BHT predicts whether the branch is taken and provides the corresponding target address.

The BTB is never flushed.

2.3. CV32A6 Design Document 51

CVA6

Fig. 5: BHT saturation

BTB (Branch Target Buffer) submodule

Table 10: BTB interface signals
Signal IO Connection Type Description
clk_i in SUBSYSTEM logic Subystem clock
rst_ni in SUBSYSTEM logic Asynchronous reset active low
flush_i in tied at zero logic Flush request state
debug_mode_i in CSR logic Debug mode
vpc_i in CACHES (reg) logic Virtual PC
btb_update_i in EXECUTE btb_update_t Update BTB with resolved address
btb_prediction_o out FRONTEND btb_prediction_t BTB Prediction

When a unconditional jumps to a register (JALR instruction) is mispredicted by the EXECUTE, the relative information
is stored into the BTB, that is to say the JALR PC and the target address.

The information is stored in a 8 entry table.

The BTB is not updated if processor is in debug mode.

When a branch instruction is pre-decoded by instr_scan submodule, the BTB informs whether the input PC address is
in BTB. In this case, the BTB provides the corresponding target address.

The BTB is never flushed.

RAS (Return Address Stack) submodule

Table 11: RAS interface signals
Signal IO Connection Type Description
clk_i in SUBSYSTEM logic Subystem clock
rst_ni in SUBSYSTEM logic Asynchronous reset active low
flush_i in tied at zero logic Flush request
push_i in FRONTEND logic Push address in RAS
pop_i in FRONTEND logic Pop address from RAS
data_i in FRONTEND logic[VLEN-1:0] Data to be pushed
data_o out FRONTEND ras_t Popped data

52 Chapter 2. Organization of this Document

CVA6

When an unconditional jumps to a known target address (JAL instruction) is consummed by the instr_queue, the next
pc after the JAL instruction and the return address are stored into a FIFO.

The RAS FIFO depth is 2.

When a branch instruction is pre-decoded by instr_scan submodule, the RAS informs whether the input PC address is
in RAS. In this case, the RAS provides the corresponding target address.

The RAS is never flushed.

2.3.4 RV32 Instructions

Introduction

In this document, we present ISA (Instruction Set Architecture) for C32VA6_v0.1.0, illustrating different supported
instructions, the Base Integer Instruction set RV32I, and also other instructions in some extensions supported by the
core as:

• RV32M – Standard Extension for Integer Multiplication and Division Instructions

• RV32A – Standard Extension for Atomic Instructions

• RV32C – Standard Extension for Compressed Instructions

• RV32Zicsr – Standard Extension for CSR Instructions

• RV32Zifencei – Standard Extension for Instruction-Fetch Fence

The base RISC-V ISA has fixed-length 32-bit instructions or 16-bit instructions (the C32VA6_v0.1.0 support C exten-
sion), so that must be naturally aligned on 4-byte boundary or 2-byte boundary. The C32VA6_v0.1.0 supports:

• Only 1 hart,

• Misaligned accesses to the memory.

General purpose registers

As shown in the Table 1.1, There are 31 general-purpose registers x1–x31, which hold integer values. Register x0 is
hardwired to the constant 0. There is no hardwired subroutine return address link register, but the standard software
calling convention uses register x1 to hold the return address on a call. For C32VA6_v0.1.0, the x registers are 32
bits wide. There is one additional register also 32 bits wide: the program counter pc holds the address of the current
instruction.

Table 1.1 shows the general-purpose registers :

2.3. CV32A6 Design Document 53

CVA6

5-bit Encoding (rx) 3-bit Compressed
Encoding (rx’)

Register (ISA
name)

Register (ABI
name)

Description

0 x0 zero Hardwired zero
1 x1 ra Return address
2 x2 sp Stack pointer
3 x3 gp Global pointer
4 x4 tp Thread pointer
5 x5 t0 Temporaries/alternate

link register
6 - 7 x6 - x7 t1 - t2 Temporaries
8 0 x8 s0/fp Saved register/frame

pointer
9 1 x9 s1 Saved registers
10 - 11 2 - 3 x10 - x11 a0 - a1 Function argu-

ments/return value
12 - 15 4 - 7 x12 - x15 a2 - a5 Function arguments
16 - 17 x16 - x17 a6 - a7 Function arguments
18 - 27 x18 - x27 s2 - s11 Saved registers
28 - 31 x28 - x31 t3 - t6 Temporaries

RV32I Base Integer Instruction Set

This section describes the RV32I base integer instruction set.

Integer Register-Immediate Instructions

• ADDI: Add Immediate

Format: addi rd, rs1, imm[11:0]

Description: add sign-extended 12-bit immediate to register rs1, and store the result in register rd.

Pseudocode: x[rd] = x[rs1] + sext(imm[11:0])

Invalid values: NONE

Exception raised: NONE

• ANDI: AND Immediate

Format: andi rd, rs1, imm[11:0]

Description: perform bitwise AND on register rs1 and the sign-extended 12-bit immediate and place
the result in rd.

Pseudocode: x[rd] = x[rs1] & sext(imm[11:0])

Invalid values: NONE

Exception raised: NONE

• ORI: OR Immediate

Format: ori rd, rs1, imm[11:0]

Description: perform bitwise OR on register rs1 and the sign-extended 12-bit immediate and place
the result in rd.

54 Chapter 2. Organization of this Document

CVA6

Pseudocode: x[rd] = x[rs1] | sext(imm[11:0])

Invalid values: NONE

Exception raised: NONE

• XORI: XOR Immediate

Format: xori rd, rs1, imm[11:0]

Description: perform bitwise XOR on register rs1 and the sign-extended 12-bit immediate and place
the result in rd.

Pseudocode: x[rd] = x[rs1] ^ sext(imm[11:0])

Invalid values: NONE

Exception raised: NONE

• SLTI: Set Less Then Immediate

Format: slti rd, rs1, imm[11:0]

Description: set register rd to 1 if register rs1 is less than the sign extended immediate when both are
treated as signed numbers, else 0 is written to rd.

Pseudocode: if (x[rs1] < sext(imm[11:0]) x[rd] = 1 else x[rd] = 0

Invalid values: NONE

Exception raised: NONE

• SLTIU: Set Less Then Immediate Unsigned

Format: sltiu rd, rs1, imm[11:0]

Description: set register rd to 1 if register rs1 is less than the sign extended immediate when both are
treated as unsigned numbers, else 0 is written to rd.

Pseudocode: if (x[rs1] <u sext(imm[11:0]) x[rd] = 1 else x[rd] = 0

Invalid values: NONE

Exception raised: NONE

• SLLI: Shift Left Logic Immediate

Format: slli rd, rs1, imm[4:0]

Description: logical left shift (zeros are shifted into the lower bits).

Pseudocode: x[rd] = x[rs1] << imm[4:0]

Invalid values: NONE

Exception raised: NONE

• SRLI: Shift Right Logic Immediate

Format: srli rd, rs1, imm[4:0]

Description: logical right shift (zeros are shifted into the upper bits).

Pseudocode: x[rd] = x[rs1] >> imm[4:0]

Invalid values: NONE

Exception raised: NONE

• SRAI: Shift Right Arithmetic Immediate

2.3. CV32A6 Design Document 55

CVA6

Format: srai rd, rs1, imm[4:0]

Description: arithmetic right shift (the original sign bit is copied into the vacated upper bits).

Pseudocode: x[rd] = x[rs1] >>s imm[4:0]

Invalid values: NONE

Exception raised: NONE

• LUI: Load Upper Immediate

Format: lui rd, imm[19:0]

Description: place the immediate value in the top 20 bits of the destination register rd, filling in the
lowest 12 bits with zeros.

Pseudocode: x[rd] = sext(imm[31:12] << 12)

Invalid values: NONE

Exception raised: NONE

• AUIPC: Add Upper Immediate to PC

Format: auipc rd, imm[19:0]

Description: form a 32-bit offset from the 20-bit immediate, filling in the lowest 12 bits with zeros,
adds this offset to the pc, then place the result in register rd.

Pseudocode: x[rd] = pc + sext(immediate[31:12] << 12)

Invalid values: NONE

Exception raised: NONE

Integer Register-Register Instructions

• ADD: Addition

Format: add rd, rs1, rs2

Description: add rs2 to register rs1, and store the result in register rd.

Pseudocode: x[rd] = x[rs1] + x[rs2]

Invalid values: NONE

Exception raised: NONE

• SUB: Subtraction

Format: sub rd, rs1, rs2

Description: subtract rs2 from register rs1, and store the result in register rd.

Pseudocode: x[rd] = x[rs1] - x[rs2]

Invalid values: NONE

Exception raised: NONE

• AND: AND logical operator

Format: and rd, rs1, rs2

Description: perform bitwise AND on register rs1 and rs2 and place the result in rd.

56 Chapter 2. Organization of this Document

CVA6

Pseudocode: x[rd] = x[rs1] & x[rs2]

Invalid values: NONE

Exception raised: NONE

• OR: OR logical operator

Format: or rd, rs1, rs2

Description: perform bitwise OR on register rs1 and rs2 and place the result in rd.

Pseudocode: x[rd] = x[rs1] | x[rs2]

Invalid values: NONE

Exception raised: NONE

• XOR: XOR logical operator

Format: xor rd, rs1, rs2

Description: perform bitwise XOR on register rs1 and rs2 and place the result in rd.

Pseudocode: x[rd] = x[rs1] ^ x[rs2]

Invalid values: NONE

Exception raised: NONE

• SLT: Set Less Then

Format: slt rd, rs1, rs2

Description: set register rd to 1 if register rs1 is less than rs2 when both are treated as signed numbers,
else 0 is written to rd.

Pseudocode: if (x[rs1] < x[rs2]) x[rd] = 1 else x[rd] = 0

Invalid values: NONE

Exception raised: NONE

• SLTU: Set Less Then Unsigned

Format: sltu rd, rs1, rs2

Description: set register rd to 1 if register rs1 is less than rs2 when both are treated as unsigned
numbers, else 0 is written to rd.

Pseudocode: if (x[rs1] <u x[rs2]) x[rd] = 1 else x[rd] = 0

Invalid values: NONE

Exception raised: NONE

• SLL: Shift Left Logic

Format: sll rd, rs1, rs2

Description: logical left shift (zeros are shifted into the lower bits).

Pseudocode: x[rd] = x[rs1] << x[rs2]

Invalid values: NONE

Exception raised: NONE

• SRL: Shift Right Logic

2.3. CV32A6 Design Document 57

CVA6

Format: srl rd, rs1, rs2

Description: logical right shift (zeros are shifted into the upper bits).

Pseudocode: x[rd] = x[rs1] >> x[rs2]

Invalid values: NONE

Exception raised: NONE

• SRA: Shift Right Arithmetic

Format: sra rd, rs1, rs2

Description: arithmetic right shift (the original sign bit is copied into the vacated upper bits).

Pseudocode: x[rd] = x[rs1] >>s x[rs2]

Invalid values: NONE

Exception raised: NONE

Control Transfer Instructions

Unconditional Jumps

• JAL: Jump and Link

Format: jal rd, imm[20:1]

Description: offset is sign-extended and added to the pc to form the jump target address (pc is calcu-
lated using signed arithmetic), then setting the least-significant bit of the result to zero, and store the
address of instruction following the jump (pc+4) into register rd.

Pseudocode: x[rd] = pc+4; pc += sext(imm[20:1])

Invalid values: NONE

Exception raised: jumps to an incorrect instruction address will usually quickly raise an exception.
An exception is raised on taken branch or unconditional jump if the target address is not aligned on
4-byte or 2-byte boundary, because the core supports compressed instructions.

• JALR: Jump and Link Register

Format: jalr rd, rs1, imm[11:0]

Description: target address is obtained by adding the 12-bit signed immediate to the register rs1 (pc
is calculated using signed arithmetic), then setting the least-significant bit of the result to zero, and
store the address of instruction following the jump (pc+4) into register rd.

Pseudocode: t = pc+4; pc = (x[rs1]+sext(imm[11:0]))&1 ; x[rd] = t

Invalid values: NONE

Exception raised: jumps to an incorrect instruction address will usually quickly raise an exception.
An exception is raised on taken branch or unconditional jump if the target address is not aligned on
4-byte or 2-byte boundary, because the core supports compressed instructions.

Conditional Branches

• BEQ: Branch Equal

Format: beq rs1, rs2, imm[12:1]

Description: takes the branch (pc is calculated using signed arithmetic) if registers rs1 and rs2 are
equal.

58 Chapter 2. Organization of this Document

CVA6

Invalid values: NONE

Pseudocode: if (x[rs1] == x[rs2]) pc += sext({imm[12:1], 1’b0}) else pc += 4

Exception raised: no instruction fetch misaligned exception is generated for a conditional branch that
is not taken.

• BNE: Branch Not Equal

Format: bne rs1, rs2, imm[12:1]

Description: takes the branch (pc is calculated using signed arithmetic) if registers rs1 and rs2 are
not equal.

Invalid values: NONE

Pseudocode: if (x[rs1] != x[rs2]) pc += sext({imm[12:1], 1’b0}) else pc += 4

Exception raised: no instruction fetch misaligned exception is generated for a conditional branch that
is not taken.

• BLT: Branch Less Than

Format: blt rs1, rs2, imm[12:1]

Description: takes the branch (pc is calculated using signed arithmetic) if registers rs1 less than rs2
(using signed comparison).

Invalid values: NONE

Pseudocode: if (x[rs1] < x[rs2]) pc += sext({imm[12:1], 1’b0}) else pc += 4

Exception raised: no instruction fetch misaligned exception is generated for a conditional branch that
is not taken.

• BLTU: Branch Less Than Unsigned

Format: bltu rs1, rs2, imm[12:1]

Description: takes the branch (pc is calculated using signed arithmetic) if registers rs1 less than rs2
(using unsigned comparison).

Invalid values: NONE

Pseudocode: if (x[rs1] <u x[rs2]) pc += sext({imm[12:1], 1’b0}) else pc += 4

Exception raised: no instruction fetch misaligned exception is generated for a conditional branch that
is not taken.

• BGE: Branch Greater or Equal

Format: bge rs1, rs2, imm[12:1]

Description: takes the branch (pc is calculated using signed arithmetic) if registers rs1 is greater than
or equal rs2 (using signed comparison).

Pseudocode: if (x[rs1] >= x[rs2]) pc += sext({imm[12:1], 1’b0}) else pc += 4

Invalid values: NONE

Exception raised: no instruction fetch misaligned exception is generated for a conditional branch that
is not taken.

• BGEU: Branch Greater or Equal Unsigned

2.3. CV32A6 Design Document 59

CVA6

Format: bgeu rs1, rs2, imm[12:1]

Description: takes the branch (pc is calculated using signed arithmetic) if registers rs1 is greater than
or equal rs2 (using unsigned comparison).

Pseudocode: if (x[rs1] >=u x[rs2]) pc += sext({imm[12:1], 1’b0}) else pc += 4

Exception raised: no instruction fetch misaligned exception is generated for a conditional branch that
is not taken.

Load and Store Instructions

• LB: Load Byte

Format: lb rd, imm(rs1)

Description: loads a 8-bit value from memory, then sign-extends to 32-bit before storing in rd (rd
is calculated using signed arithmetic), the effective address is obtained by adding register rs1 to the
sign-extended 12-bit offset.

Pseudocode: x[rd] = sext(M[x[rs1] + sext(imm[11:0])][7:0])

Invalid values: NONE

Exception raised: loads with a destination of x0 must still raise any exceptions and action any other
side effects even though the load value is discarded.

• LH: Load Halfword

Format: lh rd, imm(rs1)

Description: loads a 16-bit value from memory, then sign-extends to 32-bit before storing in rd (rd
is calculated using signed arithmetic), the effective address is obtained by adding register rs1 to the
sign-extended 12-bit offset.

Pseudocode: x[rd] = sext(M[x[rs1] + sext(imm[11:0])][15:0])

Invalid values: NONE

Exception raised: loads with a destination of x0 must still raise any exceptions and action any other
side effects even though the load value is discarded, also an exception is raised if the memory address
isn’t aligned (2-byte boundary).

• LW: Load Word

Format: lw rd, imm(rs1)

Description: loads a 32-bit value from memory, then storing in rd (rd is calculated using signed
arithmetic). The effective address is obtained by adding register rs1 to the sign-extended 12-bit offset.

Invalid values: NONE

Pseudocode: x[rd] = sext(M[x[rs1] + sext(imm[11:0])][31:0])

Exception raised: loads with a destination of x0 must still raise any exceptions and action any other
side effects even though the load value is discarded, also an exception is raised if the memory address
isn’t aligned (4-byte boundary).

• LBU: Load Byte Unsigned

Format: lbu rd, imm(rs1)

60 Chapter 2. Organization of this Document

CVA6

Description: loads a 8-bit value from memory, then zero-extends to 32-bit before storing in rd (rd is
calculated using unsigned arithmetic), the effective address is obtained by adding register rs1 to the
sign-extended 12-bit offset.

Pseudocode: x[rd] = zext(M[x[rs1] + sext(imm[11:0])][7:0])

Invalid values: NONE

Exception raised: loads with a destination of x0 must still raise any exceptions and action any other
side effects even though the load value is discarded.

• LHU: Load Halfword Unsigned

Format: lhu rd, imm(rs1)

Description: loads a 16-bit value from memory, then zero-extends to 32-bit before storing in rd (rd
is calculated using unsigned arithmetic), the effective address is obtained by adding register rs1 to the
sign-extended 12-bit offset.

Pseudocode: x[rd] = zext(M[x[rs1] + sext(imm[11:0])][15:0])

Invalid values: NONE

Exception raised: loads with a destination of x0 must still raise any exceptions and action any other
side effects even though the load value is discarded, also an exception is raised if the memory address
isn’t aligned (2-byte boundary).

• SB: Store Byte

Format: sb rs2, imm(rs1)

Description: stores a 8-bit value from the low bits of register rs2 to memory, the effective address is
obtained by adding register rs1 to the sign-extended 12-bit offset.

Pseudocode: M[x[rs1] + sext(imm[11:0])][7:0] = x[rs2][7:0]

Invalid values: NONE

Exception raised: NONE

• SH: Store Halfword

Format: sh rs2, imm(rs1)

Description: stores a 16-bit value from the low bits of register rs2 to memory, the effective address
is obtained by adding register rs1 to the sign-extended 12-bit offset.

Pseudocode: M[x[rs1] + sext(imm[11:0])][15:0] = x[rs2][15:0]

Invalid values: NONE

Exception raised: an exception is raised if the memory address isn’t aligned (2-byte boundary).

• SW: Store Word

Format: sw rs2, imm(rs1)

Description: stores a 32-bit value from register rs2 to memory, the effective address is obtained by
adding register rs1 to the sign-extended 12-bit offset.

Pseudocode: M[x[rs1] + sext(imm[11:0])][31:0] = x[rs2][31:0]

Invalid values: NONE

Exception raised: an exception is raised if the memory address isn’t aligned (4-byte boundary).

2.3. CV32A6 Design Document 61

CVA6

Memory Ordering

• FENCE: Fence Instruction

Format: fence pre, succ

Description: order device I/O and memory accesses as viewed by other RISC-V harts and external
devices or coprocessors. Any combination of device input (I), device output (O), memory reads (R),
and memory writes (W) may be ordered with respect to any combination of the same. Informally,
no other RISC-V hart or external device can observe any operation in the successor set following a
FENCE before any operation in the predecessor set preceding the FENCE, as the core support 1 hart,
the fence instruction has no effect so we can considerate it as a nop instruction.

Pseudocode: No operation (nop)

Invalid values: NONE

Exception raised: NONE

Environment Call and Breakpoints

• ECALL: Environment Call

Format: ecall

Description: make a request to the supporting execution environment, which is usually an operating
system. The ABI for the system will define how parameters for the environment request are passed,
but usually these will be in defined locations in the integer register file.

Pseudocode: RaiseException(EnvironmentCall)

Invalid values: NONE

Exception raised: Raise an Environment Call exception.

• EBREAK:Environment Break

Format: ebreak

Description: cause control to be transferred back to a debugging environment.

Pseudocode: RaiseException(Breakpoint)

Invalid values: NONE

Exception raised: Raise a Breakpoint exception.

RV32M Multiplication and Division Instructions

This chapter describes the standard integer multiplication and division instruction extension, which is named “M” and
contains instructions that multiply or divide values held in two integer registers.

62 Chapter 2. Organization of this Document

CVA6

Multiplication Operations

• MUL: Multiplication

Format: mul rd, rs1, rs2

Description: performs a 32-bit × 32-bit multiplication and places the lower 32 bits in the destination
register (Both rs1 and rs2 treated as signed numbers).

Pseudocode: x[rd] = x[rs1] * x[rs2]

Invalid values: NONE

Exception raised: NONE

• MULH: Multiplication Higher

Format: mulh rd, rs1, rs2

Description: performs a 32-bit × 32-bit multiplication and places the upper 32 bits in the destination
register of the 64-bit product (Both rs1 and rs2 treated as signed numbers).

Pseudocode: x[rd] = (x[rs1] s*s x[rs2]) >>s 32

Invalid values: NONE

Exception raised: NONE

• MULHU: Multiplication Higher Unsigned

Format: mulhu rd, rs1, rs2

Description: performs a 32-bit × 32-bit multiplication and places the upper 32 bits in the destination
register of the 64-bit product (Both rs1 and rs2 treated as unsigned numbers).

Pseudocode: x[rd] = (x[rs1] u*u x[rs2]) >>u 32

Invalid values: NONE

Exception raised: NONE

• MULHSU: Multiplication Higher Signed Unsigned

Format: mulhsu rd, rs1, rs2

Description: performs a 32-bit × 32-bit multiplication and places the upper 32 bits in the destination
register of the 64-bit product (rs1 treated as signed number, rs2 treated as unsigned number).

Pseudocode: x[rd] = (x[rs1] s*u x[rs2]) >>s 32

Invalid values: NONE

Exception raised: NONE

Division Operations

• DIV: Division

Format: div rd, rs1, rs2

Description: perform signed integer division of 32 bits by 32 bits (rounding towards zero).

Pseudocode: x[rd] = x[rs1] /s x[rs2]

Invalid values: NONE

Exception raised: NONE

2.3. CV32A6 Design Document 63

CVA6

• DIVU: Division Unsigned

Format: divu rd, rs1, rs2

Description: perform unsigned integer division of 32 bits by 32 bits (rounding towards zero).

Pseudocode: x[rd] = x[rs1] /u x[rs2]

Invalid values: NONE

Exception raised: NONE

• REM: Remain

Format: rem rd, rs1, rs2

Description: provide the remainder of the corresponding division operation DIV (the sign of rd equals
the sign of rs1).

Pseudocode: x[rd] = x[rs1] %s x[rs2]

Invalid values: NONE

Exception raised: NONE

• REMU: Remain Unsigned

Format: rem rd, rs1, rs2

Description: provide the remainder of the corresponding division operation DIVU.

Pseudocode: x[rd] = x[rs1] %u x[rs2]

Invalid values: NONE

Exception raised: NONE

RV32A Atomic Instructions

The standard atomic instruction extension is denoted by instruction subset name “A”, and contains instructions that
atomically read-modify-write memory to support synchronization between multiple RISC-V harts running in the same
memory space. The two forms of atomic instruction provided are load-reserved/store-conditional instructions and
atomic fetch-and-op memory instructions. Both types of atomic instruction support various memory consistency or-
derings including unordered, acquire, release, and sequentially consistent semantics.

Load-Reserved/Store-Conditional Instructions

• LR.W: Load-Reserved Word

Format: lr.w rd, (rs1)

Description: LR loads a word from the address in rs1, places the sign-extended value in rd, and
registers a reservation on the memory address.

Pseudocode: x[rd] = LoadReserved32(M[x[rs1]])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• LR.W: Store-Conditional Word

64 Chapter 2. Organization of this Document

CVA6

Format: sc.w rd, rs2, (rs1)

Description: SC writes a word in rs2 to the address in rs1, provided a valid reservation still exists on
that address. SC writes zero to rd on success or a nonzero code on failure.

Pseudocode: x[rd] = StoreConditional32(M[x[rs1]], x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

Atomic Memory Operations

• AMOADD.W: Atomic Memory Operation: Add Word

Format: amoadd.w rd, rs2, (rs1)

Description: AMOADD.W atomically loads a data value from the address in rs1, places the value
into register rd, then adds the loaded value and the original value in rs2, then stores the result back to
the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] + x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• AMOAND.W: Atomic Memory Operation: And Word

Format: amoand.w rd, rs2, (rs1)

Description: AMOAND.W atomically loads a data value from the address in rs1, places the value
into register rd, then performs an AND between the loaded value and the original value in rs2, then
stores the result back to the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] & x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• AMOOR.W: Atomic Memory Operation: Or Word

Format: amoor.w rd, rs2, (rs1)

Description: AMOOR.W atomically loads a data value from the address in rs1, places the value into
register rd, then performs an OR between the loaded value and the original value in rs2, then stores
the result back to the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] | x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• AMOXOR.W: Atomic Memory Operation: Xor Word

Format: amoxor.w rd, rs2, (rs1)

2.3. CV32A6 Design Document 65

CVA6

Description: AMOXOR.W atomically loads a data value from the address in rs1, places the value
into register rd, then performs a XOR between the loaded value and the original value in rs2, then
stores the result back to the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] ^ x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• AMOSWAP.W: Atomic Memory Operation: Swap Word

Format: amoswap.w rd, rs2, (rs1)

Description: AMOSWAP.W atomically loads a data value from the address in rs1, places the value
into register rd, then performs a SWAP between the loaded value and the original value in rs2, then
stores the result back to the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] SWAP x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• AMOMIN.W: Atomic Memory Operation: Minimum Word

Format: amomin.d rd, rs2, (rs1)

Description: AMOMIN.W atomically loads a data value from the address in rs1, places the value
into register rd, then choses the minimum between the loaded value and the original value in rs2, then
stores the result back to the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] MIN x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• AMOMINU.W: Atomic Memory Operation: Minimum Word, Unsigned

Format: amominu.d rd, rs2, (rs1)

Description: AMOMINU.W atomically loads a data value from the address in rs1, places the value
into register rd, then choses the minimum (the values treated as unsigned) between the loaded value
and the original value in rs2, then stores the result back to the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] MINU x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• AMOMAX.W: Atomic Memory Operation: Maximum Word, Unsigned

Format: amomax.d rd, rs2, (rs1)

Description: AMOMAX.W atomically loads a data value from the address in rs1, places the value
into register rd, then choses the maximum between the loaded value and the original value in rs2, then
stores the result back to the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] MAX x[rs2])

Invalid values: NONE

66 Chapter 2. Organization of this Document

CVA6

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

• AMOMAXU.W: Atomic Memory Operation: Maximum Word, Unsigned

Format: amomaxu.d rd, rs2, (rs1)

Description: AMOMAXU.W atomically loads a data value from the address in rs1, places the value
into register rd, then choses the maximum (the values treated as unsigned) between the loaded value
and the original value in rs2, then stores the result back to the address in rs1.

Pseudocode: x[rd] = AMO32(M[x[rs1]] MAXU x[rs2])

Invalid values: NONE

Exception raised: If the address is not naturally aligned (4-byte boundary), a misaligned address
exception will be generated.

RV32C Compressed Instructions

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V instructions
when:

• the immediate or address offset is small;

• one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack pointer (x2);

• the destination register and the first source register are identical;

• the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension allows 16-bit instructions
to be freely intermixed with 32-bit instructions, with the latter now able to start on any 16-bit boundary. With the
addition of the C extension, JAL and JALR instructions will no longer raise an instruction misaligned exception.

Integer Computational Instructions

• C.LI: Compressed Load Immediate

Format: c.li rd, imm[5:0]

Description: loads the sign-extended 6-bit immediate, imm, into register rd.

Pseudocode: x[rd] = sext(imm[5:0])

Invalid values: rd = x0

Exception raised: NONE

• C.LUI: Compressed Load Upper Immediate

Format: c.lui rd, nzimm[17:12]

Description: loads the non-zero 6-bit immediate field into bits 17–12 of the destination register, clears
the bottom 12 bits, and sign-extends bit 17 into all higher bits of the destination.

Pseudocode: x[rd] = sext(nzimm[17:12] << 12)

Invalid values: rd = x0 & rd = x2 & nzimm = 0

Exception raised: NONE

• C.ADDI: Compressed Addition Immediate

2.3. CV32A6 Design Document 67

CVA6

Format: c.addi rd, nzimm[5:0]

Description: adds the non-zero sign-extended 6-bit immediate to the value in register rd then writes
the result to rd.

Pseudocode: x[rd] = x[rd] + sext(nzimm[5:0])

Invalid values: rd = x0 & nzimm = 0

Exception raised: NONE

• C.ADDI16SP: Addition Immediate Scaled by 16, to Stack Pointer

Format: c.addi16sp nzimm[9:4]

Description: adds the non-zero sign-extended 6-bit immediate to the value in the stack pointer
(sp=x2), where the immediate is scaled to represent multiples of 16 in the range (-512,496).
C.ADDI16SP is used to adjust the stack pointer in procedure prologues and epilogues. C.ADDI16SP
shares the opcode with C.LUI, but has a destination field of x2.

Pseudocode: x[2] = x[2] + sext(nzimm[9:4])

Invalid values: rd != x2 & nzimm = 0

Exception raised: NONE

• C.ADDI4SPN: Addition Immediate Scaled by 4, to Stack Pointer

Format: c.addi4spn nzimm[9:2]

Description: adds a zero-extended non-zero immediate, scaled by 4, to the stack pointer, x2, and
writes the result to rd’. This instruction is used to generate pointers to stack-allocated variables.

Pseudocode: x[8 + rd’] = x[2] + zext(nzimm[9:2])

Invalid values: nzimm = 0

Exception raised: NONE

• C.SLLI: Compressed Shift Left Logic Immediate

Format: c.slli rd, uimm[5:0]

Description: performs a logical left shift (zeros are shifted into the lower bits).

Pseudocode: x[rd] = x[rd] << uimm[5:0]

Invalid values: rd = x0 & uimm[5] = 0

Exception raised: NONE

• C.SRLI: Compressed Shift Right Logic Immediate

Format: c.srli rd’, uimm[5:0]

Description: performs a logical right shift (zeros are shifted into the upper bits).

Pseudocode: x[8 + rd’] = x[8 + rd’] >> uimm[5:0]

Invalid values: uimm[5] = 0

Exception raised: NONE

• C.SRAI: Compressed Shift Right Arithmetic Immediate

Format: c.srai rd’, uimm[5:0]

Description: performs an arithmetic right shift (sign bits are shifted into the upper bits).

Pseudocode: x[8 + rd’] = x[8 + rd’] >>s uimm[5:0]

68 Chapter 2. Organization of this Document

CVA6

Invalid values: uimm[5] = 0

Exception raised: NONE

• C.ANDI: Compressed AND Immediate

Format: c.andi rd’, imm[5:0]

Description: computes the bitwise AND of the value in register rd’, and the sign-extended 6-bit
immediate, then writes the result to rd’.

Pseudocode: x[8 + rd’] = x[8 + rd’] & sext(imm[5:0])

Invalid values: NONE

Exception raised: NONE

• C.ADD: Compressed Addition

Format: c.add rd, rs2

Description: adds the values in registers rd and rs2 and writes the result to register rd.

Pseudocode: x[rd] = x[rd] + x[rs2]

Invalid values: rd = x0 & rs2 = x0

Exception raised: NONE

• C.MV: Move

Format: c.mv rd, rs2

Description: copies the value in register rs2 into register rd.

Pseudocode: x[rd] = x[rs2]

Invalid values: rd = x0 & rs2 = x0

Exception raised: NONE

• C.AND: Compressed AND

Format: c.and rd’, rs2’

Description: computes the bitwise AND of of the value in register rd’, and register rs2’, then writes
the result to rd’.

Pseudocode: x[8 + rd’] = x[8 + rd’] & x[8 + rs2’]

Invalid values: NONE

Exception raised: NONE

• C.OR: Compressed OR

Format: c.or rd’, rs2’

Description: computes the bitwise OR of of the value in register rd’, and register rs2’, then writes the
result to rd’.

Pseudocode: x[8 + rd’] = x[8 + rd’] | x[8 + rs2’]

Invalid values: NONE

Exception raised: NONE

• C.XOR: Compressed XOR

2.3. CV32A6 Design Document 69

CVA6

Format: c.and rd’, rs2’

Description: computes the bitwise XOR of of the value in register rd’, and register rs2’, then writes
the result to rd’.

Pseudocode: x[8 + rd’] = x[8 + rd’] ^ x[8 + rs2’]

Invalid values: NONE

Exception raised: NONE

• C.SUB: Compressed Subtraction

Format: c.sub rd’, rs2’

Description: subtracts the value in registers rs2’ from value in rd’ and writes the result to register rd’.

Pseudocode: x[8 + rd’] = x[8 + rd’] - x[8 + rs2’]

Invalid values: NONE

Exception raised: NONE

• C.EBREAK: Compressed Ebreak

Format: c.ebreak

Description: cause control to be transferred back to the debugging environment.

Pseudocode: RaiseException(Breakpoint)

Invalid values: NONE

Exception raised: Raise a Breakpoint exception.

Control Transfer Instructions

• C.J: Compressed Jump

Format: c.j imm[11:1]

Description: performs an unconditional control transfer. The offset is sign-extended and added to
the pc to form the jump target address.

Pseudocode: pc += sext(imm[11:1])

Invalid values: NONE

Exception raised: jumps to an incorrect instruction address will usually quickly raise an exception.

• C.JAL: Compressed Jump and Link

Format: c.jal imm[11:1]

Description: performs the same operation as C.J, but additionally writes the address of the instruction
following the jump (pc+2) to the link register, x1.

Pseudocode: x[1] = pc+2; pc += sext(imm[11:1])

Invalid values: NONE

Exception raised: jumps to an incorrect instruction address will usually quickly raise an exception.

• C.JR: Compressed Jump Register

70 Chapter 2. Organization of this Document

CVA6

Format: c.jr rs1

Description: performs an unconditional control transfer to the address in register rs1.

Pseudocode: pc = x[rs1]

Invalid values: rs1 = x0

Exception raised: jumps to an incorrect instruction address will usually quickly raise an exception.

• C.JALR: Compressed Jump and Link Register

Format: c.jalr rs1

Description: performs the same operation as C.JR, but additionally writes the address of the instruc-
tion following the jump (pc+2) to the link register, x1.

Pseudocode: t = pc+2; pc = x[rs1]; x[1] = t

Invalid values: rs1 = x0

Exception raised: jumps to an incorrect instruction address will usually quickly raise an exception.

• C.BEQZ: Branch if Equal Zero

Format: c.beqz rs1’, imm[8:1]

Description: performs conditional control transfers. The offset is sign-extended and added to the pc
to form the branch target address. C.BEQZ takes the branch if the value in register rs1’ is zero.

Pseudocode: if (x[8+rs1’] == 0) pc += sext(imm[8:1])

Invalid values: NONE

Exception raised: No instruction fetch misaligned exception is generated for a conditional branch
that is not taken.

• C.BNEZ: Branch if Not Equal Zero

Format: c.bnez rs1’, imm[8:1]

Description: performs conditional control transfers. The offset is sign-extended and added to the pc
to form the branch target address. C.BEQZ takes the branch if the value in register rs1’ isn’t zero.

Pseudocode: if (x[8+rs1’] != 0) pc += sext(imm[8:1])

Invalid values: NONE

Exception raised: No instruction fetch misaligned exception is generated for a conditional branch
that is not taken.

Load and Store Instructions

• C.LWSP: Load Word Stack-Pointer

Format: c.lwsp rd, uimm(x2)

Description: loads a 32-bit value from memory into register rd. It computes an effective address by
adding the zero-extended offset, scaled by 4, to the stack pointer, x2.

Pseudocode: x[rd] = M[x[2] + zext(uimm[7:2])][31:0]

Invalid values: rd = x0

Exception raised: loads with a destination of x0 must still raise any exceptions, also an exception if
the memory address isn’t aligned (4-byte boundary).

2.3. CV32A6 Design Document 71

CVA6

• C.SWSP: Store Word Stack-Pointer

Format: c.lwsp rd, uimm(x2)

Description: stores a 32-bit value in register rs2 to memory. It computes an effective address by
adding the zero-extended offset, scaled by 4, to the stack pointer, x2.

Pseudocode: M[x[2] + zext(uimm[7:2])][31:0] = x[rs2]

Invalid values: NONE

Exception raised: An exception raised if the memory address isn’t aligned (4-byte boundary).

• C.LW: Compressed Load Word

Format: c.lw rd’, uimm(rs1’)

Description: loads a 32-bit value from memory into register rd’. It computes an effective address by
adding the zero-extended offset, scaled by 4, to the base address in register rs1’.

Pseudocode: x[8+rd’] = M[x[8+rs1’] + zext(uimm[6:2])][31:0])

Invalid values: NONE

Exception raised: An exception raised if the memory address isn’t aligned (4-byte boundary).

• C.SW: Compressed Store Word

Format: c.sw rs2’, uimm(rs1’)

Description: stores a 32-bit value from memory into register rd’. It computes an effective address by
adding the zero-extended offset, scaled by 4, to the base address in register rs1’.

Pseudocode: M[x[8+rs1’] + zext(uimm[6:2])][31:0] = x[8+rs2’]

Invalid values: NONE

Exception raised: An exception raised if the memory address isn’t aligned (4-byte boundary).

RV32Zicsr Control and Status Register Instructions

All CSR instructions atomically read-modify-write a single CSR, whose CSR specifier is encoded in the 12-bit csr field
of the instruction held in bits 31–20. The immediate forms use a 5-bit zero-extended immediate encoded in the rs1
field.

• CSRRW: Control and Status Register Read and Write

Format: csrrw rd, csr, rs1

Description: reads the old value of the CSR, zero-extends the value to 32 bits, then writes it to integer
register rd, the initial value in rs1 is written to the CSR. If rd=x0, then the instruction shall not read
the CSR and shall not cause any of the side-effects that might occur on a CSR read.

Pseudocode: t = CSRs[csr]; CSRs[csr] = x[rs1]; x[rd] = t

Invalid values: NONE

Exception raised: Attempts to access a non-existent CSR raise an illegal instruction exception.

• CSRRS: Control and Status Register Read and Set

Format: csrrs rd, csr, rs1

Description: reads the value of the CSR, zero-extends the value to 32 bits, and writes it to integer
register rd, the initial value in integer register rs1 is treated as a bit mask that specifies bit positions to
be set in the CSR. Any bit that is high in rs1 will cause the corresponding bit to be set in the CSR, if

72 Chapter 2. Organization of this Document

CVA6

that CSR bit is writable. Other bits in the CSR are unaffected (though CSRs might have side effects
when written), if rs1=x0, then the instruction will not write to the CSR at all, and so shall not cause
any of the side effects that might otherwise occur on a CSR write, such as raising illegal instruction
exceptions on accesses to read-only CSRs.

Pseudocode: t = CSRs[csr]; CSRs[csr] = t | x[rs1]; x[rd] = t

Invalid values: NONE

Exception raised: Attempts to access a non-existent CSR raise an illegal instruction exception.

• CSRRC: Control and Status Register Read and Clear

Format: csrrc rd, csr, rs1

Description: reads the value of the CSR, zero-extends the value to 32 bits, and writes it to integer
register rd, the initial value in integer register rs1 is treated as a bit mask that specifies bit positions to
be cleared in the CSR. Any bit that is high in rs1 will cause the corresponding bit to be set in the CSR,
if that CSR bit is writable. Other bits in the CSR are unaffected (though CSRs might have side effects
when written), if rs1=x0, then the instruction will not write to the CSR at all, and so shall not cause
any of the side effects that might otherwise occur on a CSR write, such as raising illegal instruction
exceptions on accesses to read-only CSRs.

Pseudocode: t = CSRs[csr]; CSRs[csr] = t & x[rs1]; x[rd] = t

Invalid values: NONE

Exception raised: Attempts to access a non-existent CSR raise an illegal instruction exception.

• CSRRWI: Control and Status Register Read and Write Immediate

Format: csrrwi rd, csr, uimm[4:0]

Description: reads the old value of the CSR, zero-extends the value to 32 bits, then writes it to integer
register rd. The zero-extends immediate is written to the CSR. If rd=x0, then the instruction shall not
read the CSR and shall not cause any of the side-effects that might occur on a CSR read.

Pseudocode: x[rd] = CSRs[csr]; CSRs[csr] = zext(uimm[4:0])

Invalid values: NONE

Exception raised: Attempts to access a non-existent CSR raise an illegal instruction exception.

• CSRRSI: Control and Status Register Read and Set Immediate

Format: csrrsi rd, csr, uimm[4:0]

Description: reads the value of the CSR, zero-extends the value to 32 bits, and writes it to integer
register rd. The zero-extends immediate value is treated as a bit mask that specifies bit positions to be
set in the CSR. Any bit that is high in zero-extends immediate will cause the corresponding bit to be
set in the CSR, if that CSR bit is writable. Other bits in the CSR are unaffected (though CSRs might
have side effects when written), if the uimm[4:0] field is zero, then these instructions will not write
to the CSR, and shall not cause any of the side effects that might otherwise occur on a CSR write.

Pseudocode: t = CSRs[csr]; CSRs[csr] = t | zext(uimm[4:0]); x[rd] = t

Invalid values: NONE

Exception raised: Attempts to access a non-existent CSR raise an illegal instruction exception.

• CSRRCI: Control and Status Register Read and Clear Immediate

Format: csrrci rd, csr, uimm[4:0]

Description: reads the value of the CSR, zero-extends the value to 32 bits, and writes it to integer
register rd. The zero-extends immediate value is treated as a bit mask that specifies bit positions to be

2.3. CV32A6 Design Document 73

CVA6

cleared in the CSR. Any bit that is high in zero-extends immediate will cause the corresponding bit
to be set in the CSR, if that CSR bit is writable. Other bits in the CSR are unaffected (though CSRs
might have side effects when written), if the uimm[4:0] field is zero, then these instructions will not
write to the CSR, and shall not cause any of the side effects that might otherwise occur on a CSR
write.

Pseudocode: t = CSRs[csr]; CSRs[csr] = t & zext(uimm[4:0]); x[rd] = t

Invalid values: NONE

Exception raised: Attempts to access a non-existent CSR raise an illegal instruction exception.

RV32Zifencei Instruction-Fetch Fence

• FENCE.I: Fence Instruction

Format: fence.i

Description: The FENCE.I instruction is used to synchronize the instruction and data streams. RISC-
V does not guarantee that stores to instruction memory will be made visible to instruction fetches on
the same RISC-V hart until a FENCE.I instruction is executed. A FENCE.I instruction only ensures
that a subsequent instruction fetch on a RISC-V hart will see any previous data stores already visible
to the same RISC-V hart.

Pseudocode: Fence(Store, Fetch)

Invalid values: NONE

Exception raised: NONE

2.3.5 CV32A6_CSR programmers view

Tip: This section was auto-generated by Register Manager from Jade Design Automation.

Register Summary

Name Address Offset Width Access Type Reset Value Display Name
fflags 0x1 32 RW 0x00000000 Floating-Point Accrued Exceptions
frm 0x2 32 RW 0x00000000 Floating-Point Dynamic Rounding Mode
fcsr 0x3 32 RW 0x00000000 Floating-Point Control and Status Register
sstatus 0x100 32 RW 0x00000000 Supervisor Status
sie 0x104 32 RW 0x00000000 Supervisor Interrupt Enable
stvec 0x105 32 RW 0x00000000 Supervisor Trap Vector Base Address
scounteren 0x106 32 RW 0x00000000 Supervisor Counter Enable
sscratch 0x140 32 RW 0x00000000 Supervisor Scratch
sepc 0x141 32 RW 0x00000000 Supervisor Exception Program Counter
scause 0x142 32 RW 0x00000000 Supervisor Cause
stval 0x143 32 RW 0x00000000 Supervisor Trap Value
sip 0x144 32 RW 0x00000000 Supervisor Interrupt Pending
satp 0x180 32 RW 0x00000000 Supervisor Address Translation and Protection

continues on next page

74 Chapter 2. Organization of this Document

https://jade-da.com/

CVA6

Table 12 – continued from previous page
Name Address Offset Width Access Type Reset Value Display Name
mstatus 0x300 32 RW 0x00000000 Machine Status
misa 0x301 32 RW 0x00000000 Machine ISA
medeleg 0x302 32 RW 0x00000000 Machine Exception Delegation
mideleg 0x303 32 RW 0x00000000 Machine Interrupt Delegation
mie 0x304 32 RW 0x00000000 Machine Interrupt Enable
mtvec 0x305 32 RW 0x00000000 Machine Trap Vector
mcountern 0x306 32 RW 0x00000000 Machine Counter Enable
hpmevent[6] 0x323 [+ i*0x1] 32 RW 0x00000000 Hardware Performance-Monitoring Event Selector
mscratch 0x340 32 RW 0x00000000 Machine Scratch
mepc 0x341 32 RW 0x00000000 Machine Exception Program Counter
mcause 0x342 32 RW 0x00000000 Machine Cause
mtval 0x343 32 RW 0x00000000 Machine Trap Value
mip 0x344 32 RW 0x00000000 Machine Interrupt Pending
pmpcfg0 0x3A0 32 RW 0x00000000 Physical Memory Protection Config 0
pmpcfg1 0x3A1 32 RW 0x00000000 Physical Memory Protection Config 1
pmpcfg2 0x3A2 32 RW 0x00000000 Physical Memory Protection Config 2
pmpcfg3 0x3A3 32 RW 0x00000000 Physical Memory Protection Config 3
pmpaddr[16] 0x3B0 [+ i*0x1] 32 RW 0x00000000 Physical Memory Protection Address
icache 0x700 32 RW 0x00000001 Instuction Cache
dcache 0x701 32 RW 0x00000001 Data Cache
tselect 0x7A0 32 RW 0x00000000 Trigger Select
tdata1 0x7A1 32 RW 0x00000000 Trigger Data 1
tdata2 0x7A2 32 RW 0x00000000 Trigger Data 2
tdata3 0x7A3 32 RW 0x00000000 Trigger Data 3
tinfo 0x7A4 32 RO 0x00000000 Trigger Info
dcsr 0x7B0 32 RW 0x00000000 Debug Control and Status
dpc 0x7B1 32 RW 0x00000000 Debug PC
dscratch[2] 0x7B2 [+ i*0x1] 32 RW 0x00000000 Debug Scratch Register
ftran 0x800 32 RW 0x00000000
mcycle 0xB00 32 RW 0x00000000 M-mode Cycle counter
minstret 0xB02 32 RW 0x00000000 Machine Instruction Retired counter
ml1_icache_miss 0xB03 32 RW 0x00000000 L1 Inst Cache Miss
ml1_dcache_miss 0xB04 32 RW 0x00000000 L1 Data Cache Miss
mitlb_miss 0xB05 32 RW 0x00000000 ITLB Miss
mdtlb_miss 0xB06 32 RW 0x00000000 DTLB Miss
mload 0xB07 32 RW 0x00000000 Loads
mstore 0xB08 32 RW 0x00000000 Stores
mexception 0xB09 32 RW 0x00000000 Taken Exceptions
mexception_ret 0xB0A 32 RW 0x00000000 Exception Return
mbranch_jump 0xB0B 32 RW 0x00000000 Software Change of PC
mcall 0xB0C 32 RW 0x00000000 Procedure Call
mret 0xB0D 32 RW 0x00000000 Procedure Return
mmis_predict 0xB0E 32 RW 0x00000000 Branch mis-predicted
msb_full 0xB0F 32 RW 0x00000000 Scoreboard Full
mif_empty 0xB10 32 RW 0x00000000 Instruction Fetch Queue Empty
mcycleh 0xB80 32 RW 0x00000000 Upper 32-bits of M-mode Cycle counter
minstreth 0xB82 32 RW 0x00000000 Upper 32-bits of Machine Instruction Retired counter
mhpmcounterh[6] 0xB83 [+ i*0x1] 32 RW 0x00000000 Upper 32-bits of Machine Hardware Performance Monitoring Counter
cycle 0xC00 32 RO 0x00000000 Cycle counter

continues on next page

2.3. CV32A6 Design Document 75

CVA6

Table 12 – continued from previous page
Name Address Offset Width Access Type Reset Value Display Name
time 0xC01 32 RO 0x00000000 Timer
instret 0xC02 32 RO 0x00000000 Instruction Retired counter
l1_icache_miss 0xC03 32 RO 0x00000000 L1 Inst Cache Miss
l1_dcache_miss 0xC04 32 RO 0x00000000 L1 Data Cache Miss
itlb_miss 0xC05 32 RO 0x00000000 ITLB Miss
dtlb_miss 0xC06 32 RO 0x00000000 DTLB Miss
load 0xC07 32 RO 0x00000000 Loads
store 0xC08 32 RO 0x00000000 Stores
exception 0xC09 32 RO 0x00000000 Taken Exceptions
exception_ret 0xC0A 32 RO 0x00000000 Exception Return
branch_jump 0xC0B 32 RO 0x00000000 Software Change of PC
call 0xC0C 32 RO 0x00000000 Procedure Call
ret 0xC0D 32 RO 0x00000000 Procedure Return
mis_predict 0xC0E 32 RO 0x00000000 Branch mis-predicted
sb_full 0xC0F 32 RO 0x00000000 Scoreboard Full
if_empty 0xC10 32 RO 0x00000000 Instruction Fetch Queue Empty
cycleh 0xC80 32 RO 0x00000000 Upper 32-bits of Cycle counter
timeh 0xC81 32 RO 0x00000000 Upper 32-bit of Timer
instreth 0xC82 32 RO 0x00000000 Upper 32-bits of Instruction Retired counter
mvendorid 0xF11 32 RO 0x00000000 Machine Vendor ID
marchid 0xF12 32 RO 0x00000003 Machine Architecture ID
mimpid 0xF13 32 RO 0x00000000 Machine Implementation ID
mhartid 0xF14 32 RO 0x00000000 Machine Hardware Thread ID

Register Descriptions

Floating-Point Accrued Exceptions (fflags)

Address Offset
0x1

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The fields within the fcsr can also be accessed individually through different CSR addresses, and
separate assembler pseudoinstructions are defined for these accesses. The FRRM instruction reads
the Rounding Mode field frm and copies it into the least-significant three bits of integer register rd,
with zero in all other bits. FSRM swaps the value in frm by copying the original value into integer
register rd, and then writing a new value obtained from the three least-significant bits of integer
register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception
Flags field fflags.

76 Chapter 2. Organization of this Document

CVA6

Bits Name Display Name Access Type Reset
[31:5] reserved_0 Reserved RO 0b0
[4] NV Invalid Operation RW 0b0
[3] DZ Divide by Zero RW 0b0
[2] OF Overflow RW 0b0
[1] UF Underflow RW 0b0
[0] NX Inexact RW 0b0

Invalid Operation (NV)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Divide by Zero (DZ)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Overflow (OF)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Underflow (UF)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Inexact (NX)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Floating-Point Dynamic Rounding Mode (frm)

Address Offset
0x2

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The fields within the fcsr can also be accessed individually through different CSR addresses, and
separate assembler pseudoinstructions are defined for these accesses. The FRRM instruction reads
the Rounding Mode field frm and copies it into the least-significant three bits of integer register rd,
with zero in all other bits. FSRM swaps the value in frm by copying the original value into integer
register rd, and then writing a new value obtained from the three least-significant bits of integer
register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception
Flags field fflags.

2.3. CV32A6 Design Document 77

CVA6

Bits Name Display Name Access Type Reset
[31:3] reserved_0 Reserved RO 0b0
[2:0] FRM Floating-Point Rounding Mode RW 0b0

Floating-Point Rounding Mode (FRM)
Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic
rounding mode held in frm. Rounding modes are encoded as shown in the enumerated value. A value
of 111 in the instruction’s rm field selects the dynamic rounding mode held in frm. If frm is set to an
invalid value (101–111), any subsequent attempt to execute a floating-point operation with a dynamic
rounding mode will raise an illegal instruction exception. Some instructions, including widening
conversions, have the rm field but are nevertheless unaffected by the rounding mode; software should
set their rm field to RNE (000).

Table 13: The following table shows the bitfield encoding
Value Name Description
0b000 RNE Round to Nearest, ties to Even
0b001 RTZ Round towards Zero
0b010 RDN Round Down
0b011 RUP Round Up
0b100 RMM Round to Nearest, ties to Max

Magnitude
0b101 - 0b110 INVALID Reserved for future use.
0b111 DYN

In instruction’s rm field,
selects dynamic rounding
mode;

In Rounding Mode regis-
ter, Invalid.

Floating-Point Control and Status Register (fcsr)

Address Offset
0x3

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The floating-point control and status register, fcsr, is a RISC-V control and status register (CSR).
It is a read/write register that selects the dynamic rounding mode for floating-point arithmetic oper-
ations and holds the accrued exception flags.

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are as-
sembler pseudoinstructions built on the underlying CSR access instructions. FRCSR reads fcsr by
copying it into integer register rd. FSCSR swaps the value in fcsr by copying the original value into
integer register rd, and then writing a new value obtained from integer register rs1 into fcsr.

78 Chapter 2. Organization of this Document

CVA6

The fields within the fcsr can also be accessed individually through different CSR addresses, and
separate assembler pseudoinstructions are defined for these accesses. The FRRM instruction reads
the Rounding Mode field frm and copies it into the least-significant three bits of integer register rd,
with zero in all other bits. FSRM swaps the value in frm by copying the original value into integer
register rd, and then writing a new value obtained from the three least-significant bits of integer
register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception
Flags field fflags.

Bits Name Display Name Access Type Reset
[31:8] reserved_0 Reserved RO 0b0
[7:5] FRM Floating-Point Rounding Mode RW 0b0
[4] NV Invalid Operation RW 0b0
[3] DZ Divide by Zero RW 0b0
[2] OF Overflow RW 0b0
[1] UF Underflow RW 0b0
[0] NX Inexact RW 0b0

Floating-Point Rounding Mode (FRM)
Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic
rounding mode held in frm. Rounding modes are encoded as shown in the enumerated value. A value
of 111 in the instruction’s rm field selects the dynamic rounding mode held in frm. If frm is set to an
invalid value (101–111), any subsequent attempt to execute a floating-point operation with a dynamic
rounding mode will raise an illegal instruction exception. Some instructions, including widening
conversions, have the rm field but are nevertheless unaffected by the rounding mode; software should
set their rm field to RNE (000).

Table 14: The following table shows the bitfield encoding
Value Name Description
0b000 RNE Round to Nearest, ties to Even
0b001 RTZ Round towards Zero
0b010 RDN Round Down
0b011 RUP Round Up
0b100 RMM Round to Nearest, ties to Max

Magnitude
0b101 - 0b110 INVALID Reserved for future use.
0b111 DYN

In instruction’s rm field,
selects dynamic rounding
mode;

In Rounding Mode regis-
ter, Invalid.

Invalid Operation (NV)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Divide by Zero (DZ)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Overflow (OF)

2.3. CV32A6 Design Document 79

CVA6

The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Underflow (UF)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Inexact (NX)
The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software. The base RISC-V ISA does not
support generating a trap on the setting of a floating-point exception flag.

Supervisor Status (sstatus)

Address Offset
0x100

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The sstatus register keeps track of the processor’s current operating state.

The sstatus register is a subset of the mstatus register.

Bits Name Display Name Access Type Reset
[31] SD State Dirty RO 0b0
[30:20] reserved_0 Reserved RO 0b0
[19] MXR Make eXecutable Readable RW 0b0
[18] SUM Supervisor User Memory RW 0b0
[17] reserved_1 Reserved RO 0b0
[16:15] XS Extension State RO 0b0
[14:13] FS Floating-point unit State RW 0b0
[12:9] reserved_2 Reserved RO 0b0
[8] SPP Supervisor mode Prior Privilege RW 0b0
[7:6] reserved_3 Reserved RO 0b0
[5] SPIE Supervisor mode Prior Interrupt Enable RW 0b0
[4] UPIE RW 0b0
[3:2] reserved_4 Reserved RO 0b0
[1] SIE Supervisor mode Interrupt Enable RW 0b0
[0] UIE RW 0b0

State Dirty (SD)
The SD bit is a read-only bit that summarizes whether either the FS, VS, or XS fields signal the
presence of some dirty state that will require saving extended user context to memory. If FS, XS,
and VS are all read-only zero, then SD is also always zero.

Make eXecutable Readable (MXR)
The MXR bit modifies the privilege with which loads access virtual memory. When MXR=0, only

80 Chapter 2. Organization of this Document

CVA6

loads from pages marked readable will succeed. When MXR=1, loads from pages marked either
readable or executable (R=1 or X=1) will succeed. MXR has no effect when page-based virtual
memory is not in effect.

Supervisor User Memory (SUM)
The SUM (permit Supervisor User Memory access) bit modifies the privilege with which S-mode
loads and stores access virtual memory. When SUM=0, S-mode memory accesses to pages that are
accessible by U-mode will fault. When SUM=1, these accesses are permitted. SUM has no effect
when page-based virtual memory is not in effect. Note that, while SUM is ordinarily ignored when
not executing in S-mode, it is in effect when MPRV=1 and MPP=S. SUM is read-only 0 if S-mode
is not supported or if satp.MODE is read-only 0.

Extension State (XS)
The XS field is used to reduce the cost of context save and restore by setting and tracking the cur-
rent state of the user-mode extensions. The XS field encodes the status of the additional user-mode
extensions and associated state.

This field can be checked by a context switch routine to quickly determine whether a state save or
restore is required. If a save or restore is required, additional instructions and CSRs are typically
required to effect and optimize the process.

Table 15: The following table shows the bitfield encoding
Value Name Description
0b00 Off All off
0b01 Initial None dirty or clean, some on
0b10 Clean None dirty, some clean
0b11 Dirty Some dirty

Floating-point unit State (FS)
The FS field is used to reduce the cost of context save and restore by setting and tracking the cur-
rent state of the floating-point unit. The FS field encodes the status of the floating-point unit state,
including the floating-point registers f0–f31 and the CSRs fcsr, frm, and fflags.

This field can be checked by a context switch routine to quickly determine whether a state save or
restore is required. If a save or restore is required, additional instructions and CSRs are typically
required to effect and optimize the process.

Table 16: The following table shows the bitfield encoding
Value Name Description
0b00 Off
0b01 Initial
0b10 Clean
0b11 Dirty

Supervisor mode Prior Privilege (SPP)
SPP bit indicates the privilege level at which a hart was executing before entering supervisor mode.
When a trap is taken, SPP is set to 0 if the trap originated from user mode, or 1 otherwise. When an
SRET instruction is executed to return from the trap handler, the privilege level is set to user mode
if the SPP bit is 0, or supervisor mode if the SPP bit is 1; SPP is then set to 0.

Supervisor mode Prior Interrupt Enable (SPIE)
The SPIE bit indicates whether supervisor interrupts were enabled prior to trapping into supervisor
mode. When a trap is taken into supervisor mode, SPIE is set to SIE, and SIE is set to 0. When an
SRET instruction is executed, SIE is set to SPIE, then SPIE is set to 1.

2.3. CV32A6 Design Document 81

CVA6

UPIE
When a URET instruction is executed, UIE is set to UPIE, and UPIE is set to 1.

Supervisor mode Interrupt Enable (SIE)
The SIE bit enables or disables all interrupts in supervisor mode. When SIE is clear, interrupts are
not taken while in supervisor mode. When the hart is running in user-mode, the value in SIE is
ignored, and supervisor-level interrupts are enabled. The supervisor can disable individual interrupt
sources using the sie CSR.

UIE
The UIE bit enables or disables user-mode interrupts.

Supervisor Interrupt Enable (sie)

Address Offset
0x104

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The sie is the register containing supervisor interrupt enable bits.

Bits Name Display Name Access Type Reset
[31:10] reserved_0 Reserved RO 0b0
[9] SEIE Supervisor-level External Interrupt Enable RW 0b0
[8] UEIE RW 0b0
[7:6] reserved_1 Reserved RO 0b0
[5] STIE Supervisor-level Timer Interrupt Enable RW 0b0
[4] UTIE RW 0b0
[3:2] reserved_2 Reserved RO 0b0
[1] SSIE Supervisor-level Software Interrupt Enable RW 0b0
[0] USIE RW 0b0

Supervisor-level External Interrupt Enable (SEIE)
SEIE is the interrupt-enable bit for supervisor-level external interrupts.

UEIE
User-level external interrupts are disabled when the UEIE bit in the sie register is clear.

Supervisor-level Timer Interrupt Enable (STIE)
STIE is the interrupt-enable bit for supervisor-level timer interrupts.

UTIE
User-level timer interrupts are disabled when the UTIE bit in the sie register is clear.

Supervisor-level Software Interrupt Enable (SSIE)
SSIE is the interrupt-enable bit for supervisor-level software interrupts.

USIE
User-level software interrupts are disabled when the USIE bit in the sie register is clear

82 Chapter 2. Organization of this Document

CVA6

Supervisor Trap Vector Base Address (stvec)

Address Offset
0x105

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The stvec register holds trap vector configuration, consisting of a vector base address (BASE) and
a vector mode (MODE).

Bits Name Display Name Access Type Reset
[31:2] BASE RW 0b0
[1:0] MODE RW 0b0

BASE
The BASE field in stvec is a WARL field that can hold any valid virtual or physical address, subject
to the following alignment constraints: the address must be 4-byte aligned, and MODE settings other
than Direct might impose additional alignment constraints on the value in the BASE field.

MODE
When MODE=Direct, all traps into supervisor mode cause the pc to be set to the address in the BASE
field. When MODE=Vectored, all synchronous exceptions into supervisor mode cause the pc to be
set to the address in the BASE field, whereas interrupts cause the pc to be set to the address in the
BASE field plus four times the interrupt cause number.

Table 17: The following table shows the bitfield encoding
Value Name Description
0b00 Direct All exceptions set pc to BASE.
0b01 Vectored Asynchronous interrupts set pc to BASE+4×cause.
0b10 - 0b11 Reserved Reserved

Supervisor Counter Enable (scounteren)

Address Offset
0x106

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The counter-enable register scounteren controls the availability of the hardware performance mon-
itoring counters to U-mode.

2.3. CV32A6 Design Document 83

CVA6

Bits Name Display Name Access Type Reset
[31:3] HPMn Hpmcountern RW 0b0
[2] IR Instret RW 0b0
[1] TM Time RW 0b0
[0] CY Cycle RW 0b0

Hpmcountern (HPMn)
When HPMn is clear, attempts to read the hpmcountern register while executing in U-mode will
cause an illegal instruction exception. When this bit is set, access to the corresponding register is
permitted.

Instret (IR)
When IR is clear, attempts to read the instret register while executing in U-mode will cause an
illegal instruction exception. When this bit is set, access to the corresponding register is permitted.

Time (TM)
When TM is clear, attempts to read the time register while executing in U-mode will cause an illegal
instruction exception. When this bit is set, access to the corresponding register is permitted.

Cycle (CY)
When CY is clear, attempts to read the cycle register while executing in U-mode will cause an illegal
instruction exception. When this bit is set, access to the corresponding register is permitted.

Supervisor Scratch (sscratch)

Address Offset
0x140

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The sscratch register is dedicated for use by the supervisor.

Bits Name Display Name Access Type Reset
[31:0] SSCRATCH Supervisor Scratch RW 0b0

Supervisor Scratch (SSCRATCH)
Typically, sscratch is used to hold a pointer to the hart-local supervisor context while the hart is
executing user code. At the beginning of a trap handler, sscratch is swapped with a user register
to provide an initial working register.

84 Chapter 2. Organization of this Document

CVA6

Supervisor Exception Program Counter (sepc)

Address Offset
0x141

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
When a trap is taken into S-mode, sepc is written with the virtual address of the instruction that was
interrupted or that encountered the exception. Otherwise, sepc is never written by the implementa-
tion, though it may be explicitly written by software.

Bits Name Display Name Access Type Reset
[31:0] SEPC Supervisor Exception Program Counter RW 0b0

Supervisor Exception Program Counter (SEPC)
The low bit of SEPC (SEPC[0]) is always zero. On implementations that support only IALIGN=32,
the two low bits (SEPC[1:0]) are always zero.

Supervisor Cause (scause)

Address Offset
0x142

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
When a trap is taken into S-mode, scause is written with a code indicating the event that caused the
trap. Otherwise, scause is never written by the implementation, though it may be explicitly written
by software.

Supervisor cause register (scause) values after trap are shown in the following table.

2.3. CV32A6 Design Document 85

CVA6

Interrupt Exception Code Description
1 0 Reserved
1 1 Supervisor software interrupt
1 2-4 Reserved
1 5 Supervisor timer interrupt
1 6-8 Reserved
1 9 Supervisor external interrupt
1 10-15 Reserved
1 16 Designated for platform use
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10-11 Reserved
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16-23 Reserved
0 24-31 Designated for custom use
0 32-47 Reserved
0 48-63 Designated for custom use
0 64 Reserved

Bits Name Display Name Access Type Reset
[31] Interrupt RW 0b0
[30:0] Exception_Code Exception Code RW 0b0

Interrupt
The Interrupt bit in the scause register is set if the trap was caused by an interrupt.

Exception Code (Exception_Code)
The Exception Code field contains a code identifying the last exception or interrupt.

Supervisor Trap Value (stval)

Address Offset
0x143

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

86 Chapter 2. Organization of this Document

CVA6

Description
When a trap is taken into S-mode, stval is written with exception-specific information to assist
software in handling the trap. Otherwise, stval is never written by the implementation, though it
may be explicitly written by software. The hardware platform will specify which exceptions must set
stval informatively and which may unconditionally set it to zero.

Bits Name Display Name Access Type Reset
[31:0] STVAL Supervisor Trap Value RW 0b0

Supervisor Trap Value (STVAL)
If stval is written with a nonzero value when a breakpoint, address-misaligned, access-fault, or
page-fault exception occurs on an instruction fetch, load, or store, then stvalwill contain the faulting
virtual address.

If stval is written with a nonzero value when a misaligned load or store causes an access-fault or
page-fault exception, then stval will contain the virtual address of the portion of the access that
caused the fault.

If stval is written with a nonzero value when an instruction access-fault or page-fault exception
occurs on a system with variable-length instructions, then stval will contain the virtual address of
the portion of the instruction that caused the fault, while sepc will point to the beginning of the
instruction.

The stval register can optionally also be used to return the faulting instruction bits on an illegal
instruction exception (sepc points to the faulting instruction in memory). If stval is written with a
nonzero value when an illegal-instruction exception occurs, then stval will contain the shortest of:

• the actual faulting instruction

• the first ILEN bits of the faulting instruction

• the first SXLEN bits of the faulting instruction

The value loaded into stval on an illegal-instruction exception is right-justified and all unused upper
bits are cleared to zero. For other traps, stval is set to zero, but a future standard may redefine
stval’s setting for other traps.

Supervisor Interrupt Pending (sip)

Address Offset
0x144

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The sip register contains information on pending interrupts.

2.3. CV32A6 Design Document 87

CVA6

Bits Name Display Name Access Type Reset
[31:10] reserved_0 Reserved RO 0b0
[9] SEIP Supervisor-level External Interrupt Pending RO 0b0
[8] UEIP RW 0b0
[7:6] reserved_1 Reserved RO 0b0
[5] STIP Supervisor-level Timer Interrupt Pending RO 0b0
[4] UTIP RW 0b0
[3:2] reserved_2 Reserved RO 0b0
[1] SSIP Supervisor-level Software Interrupt Pending RO 0b0
[0] USIP RW 0b0

Supervisor-level External Interrupt Pending (SEIP)
SEIP is the interrupt-pending bit for supervisor-level external interrupts.

UEIP
UEIP may be written by S-mode software to indicate to U-mode that an external interrupt is pending.

Supervisor-level Timer Interrupt Pending (STIP)
SEIP is the interrupt-pending bit for supervisor-level timer interrupts.

UTIP
A user-level timer interrupt is pending if the UTIP bit in the sip register is set

Supervisor-level Software Interrupt Pending (SSIP)
SSIP is the interrupt-pending bit for supervisor-level software interrupts.

USIP
A user-level software interrupt is triggered on the current hart by riting 1 to its user software interrupt-
pending (USIP) bit

Supervisor Address Translation and Protection (satp)

Address Offset
0x180

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The satp register controls supervisor-mode address translation and protection.

The satp register is considered active when the effective privilege mode is S-mode or U-mode.
Executions of the address-translation algorithm may only begin using a given value of satp when
satp is active.

Note: Writing satp does not imply any ordering constraints between page-table updates and sub-
sequent address translations, nor does it imply any invalidation of address-translation caches. If the
new address space’s page tables have been modified, or if an ASID is reused, it may be necessary to
execute an SFENCE.VMA instruction after, or in some cases before, writing satp.

88 Chapter 2. Organization of this Document

CVA6

Bits Name Display Name Access Type Reset
[31] MODE Mode RW 0b0
[30:22] ASID Address Space Identifier RW 0b0
[21:0] PPN Physical Page Number RW 0b0

Mode (MODE)
This bitfield selects the current address-translation scheme.

When MODE=Bare, supervisor virtual addresses are equal to supervisor physical addresses, and
there is no additional memory protection beyond the physical memory protection scheme.

To select MODE=Bare, software must write zero to the remaining fields of satp (bits 30–0). At-
tempting to select MODE=Bare with a nonzero pattern in the remaining fields has an unspecified
effect on the value that the remaining fields assume and an unspecified effect on address translation
and protection behavior.

Table 18: The following table shows the bitfield encoding
Value Name Description
0 Bare No translation or protection.
1 Sv32 Page-based 32-bit virtual addressing.

Address Space Identifier (ASID)
This bitfield facilitates address-translation fences on a per-address-space basis.

Physical Page Number (PPN)
This bitfield holds the root page table, i.e., its supervisor physical address divided by 4 KiB.

Machine Status (mstatus)

Address Offset
0x300

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The mstatus register keeps track of and controls the hart’s current operating state.

2.3. CV32A6 Design Document 89

CVA6

Bits Name Display Name Access Type Reset
[31] SD State Dirty RO 0b0
[30:23] reserved_0 Reserved RO 0b0
[22] TSR Trap SRET RW 0b0
[21] TW Timeout Wait RW 0b0
[20] TVM Trap Virtual Memory RW 0b0
[19] MXR Make eXecutable Readable RW 0b0
[18] SUM Supervisor User Memory RW 0b0
[17] MPRV Modify Privilege RW 0b0
[16:15] XS Extension State RO 0b0
[14:13] FS Floating-point unit State RW 0b0
[12:11] MPP Machine mode Prior Privilege RW 0b0
[10:9] reserved_1 Reserved RO 0b0
[8] SPP Supervisor mode Prior Privilege RW 0b0
[7] MPIE Machine mode Prior Interrupt Enable RW 0b0
[6] reserved_2 Reserved RO 0b0
[5] SPIE Supervisor mode Prior Interrupt Enable RW 0b0
[4] UPIE RW 0b0
[3] MIE Machine mode Interrupt Enable RW 0b0
[2] reserved_3 Reserved RO 0b0
[1] SIE Supervisor mode Interrupt Enable RW 0b0
[0] UIE RW 0b0

State Dirty (SD)
The SD bit is a read-only bit that summarizes whether either the FS, VS, or XS fields signal the
presence of some dirty state that will require saving extended user context to memory. If FS, XS,
and VS are all read-only zero, then SD is also always zero.

Trap SRET (TSR)
The TSR bit supports intercepting the supervisor exception return instruction, SRET. When TSR=1,
attempts to execute SRET while executing in S-mode will raise an illegal instruction exception. When
TSR=0, this operation is permitted in S-mode.

Timeout Wait (TW)
The TW bit supports intercepting the WFI instruction. When TW=0, the WFI instruction may execute
in lower privilege modes when not prevented for some other reason. When TW=1, then if WFI is
executed in any less-privileged mode, and it does not complete within an implementation-specific,
bounded time limit, the WFI instruction causes an illegal instruction exception. The time limit may
always be 0, in which case WFI always causes an illegal instruction exception in less-privileged
modes when TW=1.

Trap Virtual Memory (TVM)
The TVM bit supports intercepting supervisor virtual-memory management operations. When
TVM=1, attempts to read or write the satp CSR or execute an SFENCE.VMA or SINVAL.VMA
instruction while executing in S-mode will raise an illegal instruction exception. When TVM=0,
these operations are permitted in S-mode.

Make eXecutable Readable (MXR)
The MXR bit modifies the privilege with which loads access virtual memory. When MXR=0, only
loads from pages marked readable will succeed. When MXR=1, loads from pages marked either
readable or executable (R=1 or X=1) will succeed. MXR has no effect when page-based virtual
memory is not in effect.

Supervisor User Memory (SUM)
The SUM (permit Supervisor User Memory access) bit modifies the privilege with which S-mode

90 Chapter 2. Organization of this Document

CVA6

loads and stores access virtual memory. When SUM=0, S-mode memory accesses to pages that are
accessible by U-mode will fault. When SUM=1, these accesses are permitted. SUM has no effect
when page-based virtual memory is not in effect. Note that, while SUM is ordinarily ignored when
not executing in S-mode, it is in effect when MPRV=1 and MPP=S.

Modify Privilege (MPRV)
The MPRV (Modify PRiVilege) bit modifies the effective privilege mode, i.e., the privilege level
at which loads and stores execute. When MPRV=0, loads and stores behave as normal, using the
translation and protection mechanisms of the current privilege mode. When MPRV=1, load and
store memory addresses are translated and protected, and endianness is applied, as though the current
privilege mode were set to MPP. Instruction address-translation and protection are unaffected by the
setting of MPRV.

Extension State (XS)
The XS field is used to reduce the cost of context save and restore by setting and tracking the cur-
rent state of the user-mode extensions. The XS field encodes the status of the additional user-mode
extensions and associated state.

This field can be checked by a context switch routine to quickly determine whether a state save or
restore is required. If a save or restore is required, additional instructions and CSRs are typically
required to effect and optimize the process.

Table 19: The following table shows the bitfield encoding
Value Name Description
0b00 Off All off
0b01 Initial None dirty or clean, some on
0b10 Clean None dirty, some clean
0b11 Dirty Some dirty

Floating-point unit State (FS)
The FS field is used to reduce the cost of context save and restore by setting and tracking the cur-
rent state of the floating-point unit. The FS field encodes the status of the floating-point unit state,
including the floating-point registers f0–f31 and the CSRs fcsr, frm, and fflags.

This field can be checked by a context switch routine to quickly determine whether a state save or
restore is required. If a save or restore is required, additional instructions and CSRs are typically
required to effect and optimize the process.

Table 20: The following table shows the bitfield encoding
Value Name Description
0b00 Off
0b01 Initial
0b10 Clean
0b11 Dirty

Machine mode Prior Privilege (MPP)
Holds the previous privilege mode for machine mode.

Supervisor mode Prior Privilege (SPP)
Holds the previous privilege mode for supervisor mode.

Machine mode Prior Interrupt Enable (MPIE)
Indicates whether machine interrupts were enabled prior to trapping into machine mode.

Supervisor mode Prior Interrupt Enable (SPIE)
Indicates whether supervisor interrupts were enabled prior to trapping into supervisor mode.

2.3. CV32A6 Design Document 91

CVA6

UPIE
indicates whether user-level interrupts were enabled prior to taking a user-level trap

Machine mode Interrupt Enable (MIE)
Global interrupt-enable bit for Machine mode.

Supervisor mode Interrupt Enable (SIE)
Global interrupt-enable bit for Supervisor mode.

UIE
Global interrupt-enable bits

Machine ISA (misa)

Address Offset
0x301

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
The misa CSR is reporting the ISA supported by the hart.

Bits Name Display Name Access Type Reset
[31:30] MXL Machine XLEN RW 0b0
[29:26] reserved_0 Reserved RO 0b0
[25:0] Extensions Extensions RW 0b0

Machine XLEN (MXL)
The MXL field encodes the native base integer ISA width.

Table 21: The following table shows the bitfield encoding
Value Name Description
0b01 XLEN_32
0b10 XLEN_64
0b11 XLEN_128

Extensions (Extensions)
The Extensions field encodes the presence of the standard extensions, with a single bit per letter of
the alphabet.

92 Chapter 2. Organization of this Document

CVA6

Table 22: The following table shows the bitfield encoding
Value Name Description
0b00000000000000000000000001A Atomic extension.
0b00000000000000000000000010B Tentatively reserved for Bit-Manipulation extension.
0b00000000000000000000000100C Compressed extension.
0b00000000000000000000001000D Double-precision floating-point extension.
0b00000000000000000000010000E RV32E base ISA.
0b00000000000000000000100000F Single-precision floating-point extension.
0b00000000000000000001000000G Reserved.
0b00000000000000000010000000H Hypervisor extension.
0b00000000000000000100000000I RV32I/64I/128I base ISA.
0b00000000000000001000000000J Tentatively reserved for Dynamically Translated Lan-

guages extension.
0b00000000000000010000000000K Reserved.
0b00000000000000100000000000L Reserved.
0b00000000000001000000000000M Integer Multiply/Divide extension.
0b00000000000010000000000000N Tentatively reserved for User-Level Interrupts extension.
0b00000000000100000000000000O Reserved.
0b00000000001000000000000000P Tentatively reserved for Packed-SIMD extension.
0b00000000010000000000000000Q Quad-precision floating-point extension.
0b00000000100000000000000000R Reserved.
0b00000001000000000000000000S Supervisor mode implemented.
0b00000010000000000000000000T Reserved.
0b00000100000000000000000000U User mode implemented.
0b00001000000000000000000000V Tentatively reserved for Vector extension.
0b00010000000000000000000000W Reserved.
0b00100000000000000000000000X Non-standard extensions present.
0b01000000000000000000000000Y Reserved.
0b10000000000000000000000000Z Reserved.

Machine Exception Delegation (medeleg)

Address Offset
0x302

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Provides individual read/write bits to indicate that certain exceptions should be processed directly by
a lower privilege level.

Bits Name Display Name Access Type Reset
[31:0] Synchronous_Exceptions Synchronous Exceptions RW 0b0

Synchronous Exceptions (Synchronous_Exceptions)
There is a bit position allocated for every synchronous exception, with the index of the bit position

2.3. CV32A6 Design Document 93

CVA6

equal to the value returned in the mcause register.

Machine Interrupt Delegation (mideleg)

Address Offset
0x303

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Provides individual read/write bits to indicate that certain interrupts should be processed directly by
a lower privilege level.

Bits Name Display Name Access Type Reset
[31:0] Interrupts Interrupts RW 0b0

Interrupts (Interrupts)
This bitfield holds trap delegation bits for individual interrupts, with the layout of bits matching those
in the mip register.

Machine Interrupt Enable (mie)

Address Offset
0x304

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
This register contains machine interrupt enable bits.

94 Chapter 2. Organization of this Document

CVA6

Bits Name Display Name Access Type Reset
[31:12] reserved_0 Reserved RO 0b0
[11] MEIE M-mode External Interrupt Enable RW 0b0
[10] reserved_1 Reserved RO 0b0
[9] SEIE S-mode External Interrupt Enable RW 0b0
[8] UEIE RW 0b0
[7] MTIE M-mode Timer Interrupt Enable RW 0b0
[6] reserved_2 Reserved RO 0b0
[5] STIE S-mode Timer Interrupt Enable RW 0b0
[4] UTIE RW 0b0
[3] MSIE M-mode Software Interrupt Enable RW 0b0
[2] reserved_3 Reserved RO 0b0
[1] SSIE S-mode Software Interrupt Enable RW 0b0
[0] USIE RW 0b0

M-mode External Interrupt Enable (MEIE)
Enables machine mode external interrupts.

S-mode External Interrupt Enable (SEIE)
Enables supervisor mode external interrupts.

UEIE
enables U-mode external interrupts

M-mode Timer Interrupt Enable (MTIE)
Enables machine mode timer interrupts.

S-mode Timer Interrupt Enable (STIE)
Enables supervisor mode timer interrupts.

UTIE
timer interrupt-enable bit for U-mode

M-mode Software Interrupt Enable (MSIE)
Enables machine mode software interrupts.

S-mode Software Interrupt Enable (SSIE)
Enables supervisor mode software interrupts.

USIE
enable U-mode software interrrupts

Machine Trap Vector (mtvec)

Address Offset
0x305

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
This register holds trap vector configuration, consisting of a vector base address and a vector mode.

2.3. CV32A6 Design Document 95

CVA6

Bits Name Display Name Access Type Reset
[31:2] BASE RW 0b0
[1:0] MODE RW 0b0

BASE
Holds the vector base address. The value in the BASE field must always be aligned on a 4-byte
boundary.

MODE
Imposes additional alignment constraints on the value in the BASE field.

Table 23: The following table shows the bitfield encoding
Value Name Description
0b00 Direct All exceptions set pc to BASE.
0b01 Vectored Asynchronous interrupts set pc to BASE+4×cause.
0b10-0b11 Reserved Reserved.

Machine Counter Enable (mcountern)

Address Offset
0x306

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
This register controls the availability of the hardware performance-monitoring counters to the next-
lowest privileged mode.

Bits Name Display Name Access Type Reset
[31:3] HPMn Hpmcountern RW 0b0
[2] IR Instret RW 0b0
[1] TM Time RW 0b0
[0] CY Cycle RW 0b0

Hpmcountern (HPMn)
When HPMn is clear, attempts to read the hpmcountern register while executing in S-mode or U-
mode will cause an illegal instruction exception. When this bit is set, access to the corresponding
register is permitted in the next implemented privilege mode.

Instret (IR)
When IR is clear, attempts to read the instret register while executing in S-mode or U-mode will
cause an illegal instruction exception. When this bit is set, access to the corresponding register is
permitted in the next implemented privilege mode.

Time (TM)
When TM is clear, attempts to read the time register while executing in S-mode or U-mode will
cause an illegal instruction exception. When this bit is set, access to the corresponding register is
permitted in the next implemented privilege mode.

96 Chapter 2. Organization of this Document

CVA6

Cycle (CY)
When CY is clear, attempts to read the cycle register while executing in S-mode or U-mode will
cause an illegal instruction exception. When this bit is set, access to the corresponding register is
permitted in the next implemented privilege mode.

Hardware Performance-Monitoring Event Selector (hpmevent[6])

Address Offset
0x323 [+ i*0x1]

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
This register controls which event causes the corresponding counter to increment.

Bits Name Display Name Access Type Reset
[31:5] reserved_0 Reserved RO 0b0
[4:0] mhpmevent RW 0b0

mhpmevent
event selector CSRs

Machine Scratch (mscratch)

Address Offset
0x340

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
This register is used to hold a pointer to a machine-mode hart-local context space and swapped with
a user register upon entry to an M-mode trap handler.

Bits Name Display Name Access Type Reset
[31:0] mscratch Machine Scratch RW 0b0

Machine Scratch (mscratch)
Holds a pointer to a machine-mode hart-local context space and swapped with a user register upon
entry to an M-mode trap handler.

2.3. CV32A6 Design Document 97

CVA6

Machine Exception Program Counter (mepc)

Address Offset
0x341

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
This register must be able to hold all valid virtual addresses.

Bits Name Display Name Access Type Reset
[31:0] mepc Machine Exception Program Counter RW 0b0

Machine Exception Program Counter (mepc)
When a trap is taken into M-mode, mepc is written with the virtual address of the instruction that
was interrupted or that encountered the exception.

Machine Cause (mcause)

Address Offset
0x342

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
When a trap is taken into M-mode, mcause is written with a code indicating the event that caused the
trap.

Machine cause register (mcause) values after trap are shown in the following table.

98 Chapter 2. Organization of this Document

CVA6

Interrupt Exception Code Description
1 0 Reserved
1 1 Supervisor software interrupt
1 2-4 Reserved
1 5 Supervisor timer interrupt
1 6-8 Reserved
1 9 Supervisor external interrupt
1 10-15 Reserved
1 16 Designated for platform use
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10-11 Reserved
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16-23 Reserved
0 24-31 Designated for custom use
0 32-47 Reserved
0 48-63 Designated for custom use
0 64 Reserved

Bits Name Display Name Access Type Reset
[31] Interrupt Interrupt RW 0b0
[30:0] exception_code Exception Code RW 0b0

Interrupt (Interrupt)
This bit is set if the trap was caused by an interrupt.

Exception Code (exception_code)
This field contains a code identifying the last exception or interrupt.

Machine Trap Value (mtval)

Address Offset
0x343

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

2.3. CV32A6 Design Document 99

CVA6

Description
When a trap is taken into M-mode, mtval is either set to zero or written with exception-specific
information to assist software in handling the trap.

Bits Name Display Name Access Type Reset
[31:0] mtval Machine Trap Value RW 0b0

Machine Trap Value (mtval)
If mtval is written with a nonzero value when a breakpoint, address-misaligned, access-fault, or
page-fault exception occurs on an instruction fetch, load, or store, then mtval will contain the faulting
virtual address.

If mtval is written with a nonzero value when a misaligned load or store causes an access-fault or
page-fault exception, then mtval will contain the virtual address of the portion of the access that
caused the fault.

If mtval is written with a nonzero value when an instruction access-fault or page-fault exception
occurs on a system with variable-length instructions, then mtval will contain the virtual address of
the portion of the instruction that caused the fault, while mepc will point to the beginning of the
instruction.

Machine Interrupt Pending (mip)

Address Offset
0x344

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
This register contains machine interrupt pending bits.

Bits Name Display Name Access Type Reset
[31:12] reserved_0 Reserved RO 0b0
[11] MEIP M-mode External Interrupt Pending RO 0b0
[10] reserved_1 Reserved RO 0b0
[9] SEIP S-mode External Interrupt Pending RW 0b0
[8] UEIP RW 0b0
[7] MTIP M-mode Timer Interrupt Pending RO 0b0
[6] reserved_2 Reserved RO 0b0
[5] STIP S-mode Timer Interrupt Pending RW 0b0
[4] UTIP RW 0b0
[3] MSIP M-mode Software Interrupt Pending RO 0b0
[2] reserved_3 Reserved RO 0b0
[1] SSIP S-mode Software Interrupt Pending RW 0b0
[0] USIP RW 0b0

M-mode External Interrupt Pending (MEIP)
The interrupt-pending bit for machine-level external interrupts.

100 Chapter 2. Organization of this Document

CVA6

S-mode External Interrupt Pending (SEIP)
The interrupt-pending bit for supervisor-level external interrupts.

UEIP
enables external interrupts

M-mode Timer Interrupt Pending (MTIP)
The interrupt-pending bit for machine-level timer interrupts.

S-mode Timer Interrupt Pending (STIP)
The interrupt-pending bit for supervisor-level timer interrupts.

UTIP
Correspond to timer interrupt-pending bits for user interrupt

M-mode Software Interrupt Pending (MSIP)
The interrupt-pending bit for machine-level software interrupts.

S-mode Software Interrupt Pending (SSIP)
The interrupt-pending bit for supervisor-level software interrupts.

USIP
A hart to directly write its own USIP bits when running in the appropriate mode

Physical Memory Protection Config 0 (pmpcfg0)

Address Offset
0x3A0

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Holds configuration 0-3.

Bits Name Display Name Access Type Reset
[31:24] pmp3cfg Physical Memory Protection 3 Config RW 0b0
[23:16] pmp2cfg Physical Memory Protection 2 Config RW 0b0
[15:8] pmp1cfg Physical Memory Protection 1 Config RW 0b0
[7:0] pmp0cfg Physical Memory Protection 0 Config RW 0b0

Physical Memory Protection 3 Config (pmp3cfg)
Holds the configuration.

Physical Memory Protection 2 Config (pmp2cfg)
Holds the configuration.

Physical Memory Protection 1 Config (pmp1cfg)
Holds the configuration.

Physical Memory Protection 0 Config (pmp0cfg)
Holds the configuration.

2.3. CV32A6 Design Document 101

CVA6

Physical Memory Protection Config 1 (pmpcfg1)

Address Offset
0x3A1

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Holds configuration 4-7.

Bits Name Display Name Access Type Reset
[31:24] pmp7cfg Physical Memory Protection 7 Config RW 0b0
[23:16] pmp6cfg Physical Memory Protection 6 Config RW 0b0
[15:8] pmp5cfg Physical Memory Protection 5 Config RW 0b0
[7:0] pmp4cfg Physical Memory Protection 4 Config RW 0b0

Physical Memory Protection 7 Config (pmp7cfg)
Holds the configuration.

Physical Memory Protection 6 Config (pmp6cfg)
Holds the configuration.

Physical Memory Protection 5 Config (pmp5cfg)
Holds the configuration.

Physical Memory Protection 4 Config (pmp4cfg)
Holds the configuration.

Physical Memory Protection Config 2 (pmpcfg2)

Address Offset
0x3A2

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Holds configuration 8-11.

Bits Name Display Name Access Type Reset
[31:24] pmp11cfg Physical Memory Protection 11 Config RW 0b0
[23:16] pmp10cfg Physical Memory Protection 10 Config RW 0b0
[15:8] pmp9cfg Physical Memory Protection 9 Config RW 0b0
[7:0] pmp8cfg Physical Memory Protection 8 Config RW 0b0

102 Chapter 2. Organization of this Document

CVA6

Physical Memory Protection 11 Config (pmp11cfg)
Holds the configuration.

Physical Memory Protection 10 Config (pmp10cfg)
Holds the configuration.

Physical Memory Protection 9 Config (pmp9cfg)
Holds the configuration.

Physical Memory Protection 8 Config (pmp8cfg)
Holds the configuration.

Physical Memory Protection Config 3 (pmpcfg3)

Address Offset
0x3A3

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Holds configuration 12-15.

Bits Name Display Name Access Type Reset
[31:24] pmp15cfg Physical Memory Protection 15 Config RW 0b0
[23:16] pmp14cfg Physical Memory Protection 14 Config RW 0b0
[15:8] pmp13cfg Physical Memory Protection 13 Config RW 0b0
[7:0] pmp12cfg Physical Memory Protection 12 Config RW 0b0

Physical Memory Protection 15 Config (pmp15cfg)
Holds the configuration.

Physical Memory Protection 14 Config (pmp14cfg)
Holds the configuration.

Physical Memory Protection 13 Config (pmp13cfg)
Holds the configuration.

Physical Memory Protection 12 Config (pmp12cfg)
Holds the configuration.

Physical Memory Protection Address (pmpaddr[16])

Address Offset
0x3B0 [+ i*0x1]

Width (bits)
32

Access Type
RW

2.3. CV32A6 Design Document 103

CVA6

Reset Value
0x00000000

Description
Address register for Physical Memory Protection.

Bits Name Display Name Access Type Reset
[31:0] address Address RW 0b0

Address (address)
Encodes bits 33-2 of a 34-bit physical address.

Instuction Cache (icache)

Address Offset
0x700

Width (bits)
32

Access Type
RW

Reset Value
0x00000001

Description
Custom Register to enable/disable for Icache [bit 0]

Bits Name Display Name Access Type Reset
[31:1] reserved_0 Reserved RO 0b0
[0] icache Instruction Cache RW 0b1

Instruction Cache (icache)
Custom Register

Data Cache (dcache)

Address Offset
0x701

Width (bits)
32

Access Type
RW

Reset Value
0x00000001

Description
Custom Register to enable/disable for Dcache [bit 0]

Bits Name Display Name Access Type Reset
[31:1] reserved_0 Reserved RO 0b0
[0] dcache Data Cache RW 0b1

104 Chapter 2. Organization of this Document

CVA6

Data Cache (dcache)
Custom Register

Trigger Select (tselect)

Address Offset
0x7A0

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
This register determines which trigger is accessible through the other trigger registers.

Bits Name Display Name Access Type Reset
[31:0] index Index RW 0b0

Index (index)
The set of accessible triggers must start at 0, and be contiguous.

Writes of values greater than or equal to the number of supported triggers may result in a different
value in this register than what was written. To verify that what they wrote is a valid index, debuggers
can read back the value and check that tselect holds what they wrote.

Since triggers can be used both by Debug Mode and M-mode, the debugger must restore this register
if it modifies it.

Trigger Data 1 (tdata1)

Address Offset
0x7A1

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Trigger-specific data.

Bits Name Display Name Access Type Reset
[31:28] type Type RW 0b0
[27] dmode Debug Mode RW 0b0
[26:0] data Data RW 0b0

2.3. CV32A6 Design Document 105

CVA6

Type (type)
Type of trigger.

Table 24: The following table shows the bitfield encoding
Value Name Description
0b0000 no_trigger There is no trigger at this tselect.
0b0001 legacy_address_match_triggerThe trigger is a legacy SiFive address match trigger. These should

not be implemented and aren’t further documented here.
0b0010 ad-

dress_data_match_trigger
The trigger is an address/data match trigger. The remaining bits in
this register act as described in mcontrol.

0b0011 instruc-
tion_count_trigger

The trigger is an instruction count trigger. The remaining bits in
this register act as described in icount.

0b0100 inter-
rupt_trigger

The trigger is an interrupt trigger. The remaining bits in this reg-
ister act as described in itrigger.

0b0101 excep-
tion_trigger

The trigger is an exception trigger. The remaining bits in this reg-
ister act as described in etrigger.

0b0110-
0b1110

Reserved Reserved.

0b1111 trigger_exists This trigger exists (so enumeration shouldn’t terminate), but is not
currently available.

Debug Mode (dmode)
This bit is only writable from Debug Mode.

Table 25: The following table shows the bitfield encoding
Value Name Description
0 D_and_M_modeBoth Debug and M-mode can write the tdata registers at the selected

tselect.
1 M_mode_onlyOnly Debug Mode can write the tdata registers at the selected tselect.

Writes from other modes are ignored.

Data (data)
Trigger-specific data.

Trigger Data 2 (tdata2)

Address Offset
0x7A2

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Trigger-specific data.

Bits Name Display Name Access Type Reset
[31:0] data Data RW 0b0

106 Chapter 2. Organization of this Document

CVA6

Data (data)
Trigger-specific data.

Trigger Data 3 (tdata3)

Address Offset
0x7A3

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Trigger-specific data.

Bits Name Display Name Access Type Reset
[31:0] data Data RW 0b0

Data (data)
Trigger-specific data.

Trigger Info (tinfo)

Address Offset
0x7A4

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Shows trigger information.

Bits Name Display Name Access Type Reset
[31:16] reserved_0 Reserved RO 0b0
[15:0] info Info RO 0b0

Info (info)
One bit for each possible type enumerated in tdata1. Bit N corresponds to type N. If the bit is set,
then that type is supported by the currently selected trigger.

If the currently selected trigger doesn’t exist, this field contains 1.

If type is not writable, this register may be unimplemented, in which case reading it causes an illegal
instruction exception. In this case the debugger can read the only supported type from tdata1.

2.3. CV32A6 Design Document 107

CVA6

Debug Control and Status (dcsr)

Address Offset
0x7B0

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Debug ontrol and status register.

Bits Name Display Name Access Type Reset
[31:28] xdebugver Debug Version RO 0b0
[27:16] reserved_0 Reserved RO 0b0
[15] ebreakm Environment Breakpoint M-mode RW 0b0
[14] reserved_1 Reserved RO 0b0
[13] ebreaks Environment Breakpoint S-mode RW 0b0
[12] ebreaku Environment Breakpoint U-mode RW 0b0
[11] stepie Stepping Interrupt Enable RW 0b0
[10] stopcount Stop Counters RW 0b0
[9] stoptime Stop Timers RW 0b0
[8:6] cause Cause RW 0b0
[5] reserved_2 Reserved RO 0b0
[4] mprven Modify Privilege Enable RW 0b0
[3] nmip Non-Maskable Interrupt Pending RO 0b0
[2] step Step RW 0b0
[1:0] prv Privilege level RW 0b0

Debug Version (xdebugver)
Shows the version of the debug support.

Table 26: The following table shows the bitfield encoding
Value Name Description
0b0000 no_ext_debug There is no external debug support.
0b0100 ext_debug_specExternal debug support exists as it is described in the riscv-debug-release

document.
0b1111 ext_debug_no_specThere is external debug support, but it does not conform to any available

version of the riscv-debug-release spec.

Environment Breakpoint M-mode (ebreakm)
Shows the behvior of the ebreak instruction in machine mode.

Table 27: The following table shows the bitfield encoding
Value Name Description
0 break_as_spec ebreak instructions in M-mode behave as described in the Privileged

Spec.
1 break_to_debug ebreak instructions in M-mode enter Debug Mode.

108 Chapter 2. Organization of this Document

CVA6

Environment Breakpoint S-mode (ebreaks)
Shows the behvior of the ebreak instruction in supervisor mode.

Table 28: The following table shows the bitfield encoding
Value Name Description
0 break_as_spec ebreak instructions in S-mode behave as described in the Privileged

Spec.
1 break_to_debug ebreak instructions in S-mode enter Debug Mode.

Environment Breakpoint U-mode (ebreaku)
Shows the behvior of the ebreak instruction in user mode.

Table 29: The following table shows the bitfield encoding
Value Name Description
0 break_as_spec ebreak instructions in U-mode behave as described in the Privileged

Spec.
1 break_to_debug ebreak instructions in U-mode enter Debug Mode.

Stepping Interrupt Enable (stepie)
Enables/disables interrupts for single stepping.

The debugger must not change the value of this bit while the hart is running.

Table 30: The following table shows the bitfield encoding
Value Name Description
0 disabled Interrupts are disabled during single stepping.
1 enabled Interrupts are enabled during single stepping.

Stop Counters (stopcount)
Starts/stops incrementing counters in debug mode.

Table 31: The following table shows the bitfield encoding
Value Name Description
0 incre-

ment_counters
Increment counters as usual.

1 dont_increment_countersDon’t increment any counters while in Debug Mode or on ebreak in-
structions that cause entry into Debug Mode.

Stop Timers (stoptime)
Starts/stops incrementing timers in debug mode.

Table 32: The following table shows the bitfield encoding
Value Name Description
0 increment_timers Increment timers as usual.
1 dont_increment_timers Don’t increment any hart-local timers while in Debug Mode.

Cause (cause)
Explains why Debug Mode was entered.

When there are multiple reasons to enter Debug Mode in a single cycle, hardware sets cause to the
cause with the highest priority.

2.3. CV32A6 Design Document 109

CVA6

Table 33: The following table shows the bitfield encoding
Value Name Description
0b001 ebreak_instructionAn ebreak instruction was executed. (priority 3)
0b010 trig-

ger_module
The Trigger Module caused a breakpoint exception. (priority 4, highest)

0b011 debug-
ger_request

The debugger requested entry to Debug Mode using haltreq. (priority 1)

0b100 single_step The hart single stepped because step was set. (priority 0, lowest)
0b101 reset_halt The hart halted directly out of reset due to resethaltreq. It is also accept-

able to report 3 when this happens. (priority 2)

Modify Privilege Enable (mprven)
Enables/disables the modify privilege setting in debug mode.

Table 34: The following table shows the bitfield encoding
Value Name Description
0 disable_mprv MPRV in mstatus is ignored in Debug Mode.
1 enable_mprv MPRV in mstatus takes effect in Debug Mode.

Non-Maskable Interrupt Pending (nmip)
When set, there is a Non-Maskable-Interrupt (NMI) pending for the hart.

Step (step)
When set and not in Debug Mode, the hart will only execute a single instruction and then enter
Debug Mode. If the instruction does not complete due to an exception, the hart will immediately
enter Debug Mode before executing the trap handler, with appropriate exception registers set. The
debugger must not change the value of this bit while the hart is running.

Privilege level (prv)
Contains the privilege level the hart was operating in when Debug Mode was entered. A debugger
can change this value to change the hart’s privilege level when exiting Debug Mode.

Table 35: The following table shows the bitfield encoding
Value Name Description
0b00 User
0b01 Supervisor
0b11 Machine

Debug PC (dpc)

Address Offset
0x7B1

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

110 Chapter 2. Organization of this Document

CVA6

Description
Upon entry to debug mode, dpc is updated with the virtual address of the next instruction to be
executed.

When resuming, the hart’s PC is updated to the virtual address stored in dpc. A debugger may write
dpc to change where the hart resumes.

Bits Name Display Name Access Type Reset
[31:0] dpc RW 0b0

dpc
The dpc behavior is described in more detail in the table below.

Cause Virtual Address in DPC
ebreak Address of the ebreak instruction.
single
step

Address of the instruction that would be executed next if no debugging was going on.
Ie. pc + 4 for 32-bit instructions that don’t change program flow, the destination PC on
taken jumps/branches, etc.

trig-
ger
mod-
ule

If timing is 0, the address of the instruction which caused the trigger to fire. If timing
is 1, the address of the next instruction to be executed at the time that debug mode was
entered.

halt
re-
quest

Address of the next instruction to be executed at the time that debug mode was entered.

Debug Scratch Register (dscratch[2])

Address Offset
0x7B2 [+ i*0x1]

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Optional scratch register. A debugger must not write to this register unless hartinfo explicitly
mentions it.

Bits Name Display Name Access Type Reset
[31:0] dscratch RW 0b0

2.3. CV32A6 Design Document 111

CVA6

ftran

Address Offset
0x800

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Floating Point Custom CSR

Bits Name Display Name Access Type Reset
[31:7] reserved_0 Reserved RO 0b0
[6:0] ftran RW 0b0

ftran
Floating Point Custom CSR

M-mode Cycle counter (mcycle)

Address Offset
0xB00

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Counts the number of clock cycles executed by the processor core on which the hart is running.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Count (count)
Counts the number of clock cycles executed by the processor core.

112 Chapter 2. Organization of this Document

CVA6

Machine Instruction Retired counter (minstret)

Address Offset
0xB02

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Counts the number of instructions the hart has retired.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Count (count)
Counts the number of instructions the hart has retired.

L1 Inst Cache Miss (ml1_icache_miss)

Address Offset
0xB03

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

L1 Data Cache Miss (ml1_dcache_miss)

Address Offset
0xB04

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

2.3. CV32A6 Design Document 113

CVA6

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

ITLB Miss (mitlb_miss)

Address Offset
0xB05

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

DTLB Miss (mdtlb_miss)

Address Offset
0xB06

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

114 Chapter 2. Organization of this Document

CVA6

Loads (mload)

Address Offset
0xB07

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Stores (mstore)

Address Offset
0xB08

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Taken Exceptions (mexception)

Address Offset
0xB09

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

2.3. CV32A6 Design Document 115

CVA6

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Exception Return (mexception_ret)

Address Offset
0xB0A

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Software Change of PC (mbranch_jump)

Address Offset
0xB0B

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Procedure Call (mcall)

Address Offset
0xB0C

Width (bits)
32

Access Type
RW

116 Chapter 2. Organization of this Document

CVA6

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Procedure Return (mret)

Address Offset
0xB0D

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Branch mis-predicted (mmis_predict)

Address Offset
0xB0E

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

2.3. CV32A6 Design Document 117

CVA6

Scoreboard Full (msb_full)

Address Offset
0xB0F

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Instruction Fetch Queue Empty (mif_empty)

Address Offset
0xB10

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Upper 32-bits of M-mode Cycle counter (mcycleh)

Address Offset
0xB80

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Counts the number of clock cycles executed by the processor core on which the hart is running.

118 Chapter 2. Organization of this Document

CVA6

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Count (count)
Counts the number of clock cycles executed by the processor core.

Upper 32-bits of Machine Instruction Retired counter (minstreth)

Address Offset
0xB82

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Counts the number of instructions the hart has retired.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

Count (count)
Counts the number of instructions the hart has retired.

Upper 32-bits of Machine Hardware Performance Monitoring Counter (mhpmcounterh[6])

Address Offset
0xB83 [+ i*0x1]

Width (bits)
32

Access Type
RW

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RW 0b0

2.3. CV32A6 Design Document 119

CVA6

Cycle counter (cycle)

Address Offset
0xC00

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Cycle counter for RDCYCLE instruction.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Timer (time)

Address Offset
0xC01

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Timer for RDTIME instruction.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Instruction Retired counter (instret)

Address Offset
0xC02

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Instructions-retired counter for RDINSTRET instruction

120 Chapter 2. Organization of this Document

CVA6

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

L1 Inst Cache Miss (l1_icache_miss)

Address Offset
0xC03

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

L1 Data Cache Miss (l1_dcache_miss)

Address Offset
0xC04

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

ITLB Miss (itlb_miss)

Address Offset
0xC05

Width (bits)
32

Access Type
RO

2.3. CV32A6 Design Document 121

CVA6

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

DTLB Miss (dtlb_miss)

Address Offset
0xC06

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Loads (load)

Address Offset
0xC07

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

122 Chapter 2. Organization of this Document

CVA6

Stores (store)

Address Offset
0xC08

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Taken Exceptions (exception)

Address Offset
0xC09

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Exception Return (exception_ret)

Address Offset
0xC0A

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

2.3. CV32A6 Design Document 123

CVA6

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Software Change of PC (branch_jump)

Address Offset
0xC0B

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Procedure Call (call)

Address Offset
0xC0C

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Procedure Return (ret)

Address Offset
0xC0D

Width (bits)
32

Access Type
RO

124 Chapter 2. Organization of this Document

CVA6

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Branch mis-predicted (mis_predict)

Address Offset
0xC0E

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Scoreboard Full (sb_full)

Address Offset
0xC0F

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

2.3. CV32A6 Design Document 125

CVA6

Instruction Fetch Queue Empty (if_empty)

Address Offset
0xC10

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Hardware performance event counter.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Upper 32-bits of Cycle counter (cycleh)

Address Offset
0xC80

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Cycle counter for RDCYCLE instruction.

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Upper 32-bit of Timer (timeh)

Address Offset
0xC81

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Timer for RDTIME instruction.

126 Chapter 2. Organization of this Document

CVA6

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Upper 32-bits of Instruction Retired counter (instreth)

Address Offset
0xC82

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Instructions-retired counter for RDINSTRET instruction

Bits Name Display Name Access Type Reset
[31:0] count Count RO 0b0

Machine Vendor ID (mvendorid)

Address Offset
0xF11

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
This register provids the JEDEC manufacturer ID of the provider of the core.

Bits Name Display Name Access Type Reset
[31:7] bank Bank RO 0b0
[6:0] offset Offset RO 0b0

Bank (bank)
Contain encoding for number of one-byte continuation codes discarding the parity bit.

Offset (offset)
Contain encording for the final byte discarding the parity bit.

2.3. CV32A6 Design Document 127

CVA6

Machine Architecture ID (marchid)

Address Offset
0xF12

Width (bits)
32

Access Type
RO

Reset Value
0x00000003

Description
This register encodes the base microarchitecture of the hart.

Bits Name Display Name Access Type Reset
[31:0] architecture_id Architecture ID RO 0b11

Architecture ID (architecture_id)
Provide Encoding the base microarchitecture of the hart.

Machine Implementation ID (mimpid)

Address Offset
0xF13

Width (bits)
32

Access Type
RO

Reset Value
0x00000000

Description
Provides a unique encoding of the version of the processor implementation.

Bits Name Display Name Access Type Reset
[31:0] implementation Implementation RO 0b0

Implementation (implementation)
Provides unique encoding of the version of the processor implementation.

Machine Hardware Thread ID (mhartid)

Address Offset
0xF14

Width (bits)
32

Access Type
RO

128 Chapter 2. Organization of this Document

CVA6

Reset Value
0x00000000

Description
This register contains the integer ID of the hardware thread running the code.

Bits Name Display Name Access Type Reset
[31:0] hart_id Hart ID RO 0b0

Hart ID (hart_id)
Contains the integer ID of the hardware thread running the code.

2.3.6 AXI

Introduction

In this chapter, we describe in detail the restriction that apply to the supported features.

In order to understand how the AXI memory interface behaves in CVA6, it is necessary to read the
AMBA AXI and ACE Protocol Specification (https://developer.arm.com/documentation/ihi0022/hc) and
this chapter.

About the AXI4 protocol

The AMBA AXI protocol supports high-performance, high-frequency system designs for communication
between Manager and Subordinate components.

The AXI protocol features are:

• It is suitable for high-bandwidth and low-latency designs.

• High-frequency operation is provided, without using complex bridges.

• The protocol meets the interface requirements of a wide range of components.

• It is suitable for memory controllers with high initial access latency.

• Flexibility in the implementation of interconnect architectures is provided.

• It is backward-compatible with AHB and APB interfaces.

The key features of the AXI protocol are:

• Separate address/control and data phases.

• Support for unaligned data transfers, using byte strobes.

• Uses burst-based transactions with only the start address issued.

• Separate read and write data channels, that can provide low-cost Direct Memory Access (DMA).

• Support for issuing multiple outstanding addresses.

• Support for out-of-order transaction completion.

• Permits easy addition of register stages to provide timing closure.

The present specification is based on :

https://developer.arm.com/documentation/ihi0022/hc

2.3. CV32A6 Design Document 129

https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc

CVA6

AXI4 and CVA6

The AXI bus protocol is used with the CVA6 processor as a memory interface. Since the processor is the
one that initiates the connection with the memory, it will have a manager interface to send requests to the
subordinate, which will be the memory.

Features supported by CVA6 are the ones in the AMBA AXI4 specification and the Atomic Operation
feature from AXI5. With restriction that apply to some features.

This doesn’t mean that all the full set of signals available on an AXI interface are supported by the CVA6.
Nevertheless, all required AXI signals are implemented.

Supported AXI4 features are defined in AXI Protocol Specification sections: A3, A4, A5, A6 and A7.

Supported AXI5 feature are defined in AXI Protocol Specification section: E1.1.

Signal Description (Section A2)

This section introduces the AXI memory interface signals of CVA6. Most of the signals are supported by
CVA6, the tables summarizing the signals identify the exceptions.

In the following tables, the Src column tells whether the signal is driven by Manager ou Subordinate.

The AXI required and optional signals, and the default signals values that apply when an optional signal
is not implemented are defined in AXI Protocol Specification section A9.3.

Global signals (Section A2.1)

Table 2.1 shows the global AXI memory interface signals.

Signal Src Description
ACLK Clock source

Global clock signal. Synchronous signals are sampled on the
rising edge of the global clock.

WDATA Reset source

Global reset signal. This signal is active-LOW.

Write address channel signals (Section A2.2)

Table 2.2 shows the AXI memory interface write address channel signals. Unless the description indicates
otherwise, a signal can take any parameter if is supported.

130 Chapter 2. Organization of this Document

CVA6

Signal Src Support Description
AWID M

Yes
(optional)

Identification tag for a write transaction.
CVA6 gives the id depending on the type of
transaction.
See Transaction Identifiers (Section A5).

AWADDR M Yes

The address of the first transfer in a write
transaction.

AWLEN M

Yes
(optional)

Length, the exact number of data transfers in a write
transaction. This information determines the
number of
data transfers associated with the address.
All write transactions performed by CVA6 are of
length 1.
(AWLEN = 0b00000000)

AWSIZE M

Yes
(optional)

Size, the number of bytes in each data transfer in a
write
transaction
See Address structure (Section A3.4.1).

AWBURST M

Yes
(optional)

Burst type, indicates how address changes between
each
transfer in a write transaction.
All write transactions performed by CVA6 are of
burst type
INCR. (AWBURST = 0b01)

AWLOCK M

Yes
(optional)

Provides information about the atomic
characteristics of a
write transaction.

AWCACHE M

Yes
(optional)

Indicates how a write transaction is required to
progress
through a system.
The subordinate is always of type Device
Non-bufferable.
(AWCACHE = 0b0000)

AWPROT M Yes

Protection attributes of a write transaction:
privilege, security level, and access type.
The value of AWPROT is always 0b000.

AWQOS M

No
(optional)

Quality of Service identifier for a write transaction.
AWQOS = 0b0000

AWREGION M

No
(optional)

Region indicator for a write transaction.
AWREGION = 0b0000

AWUSER M

No
(optional)

User-defined extension for the write address
channel.
AWUSER = 0b00

AWATOP M

Yes
(optional)

AWATOP indicates the Properties of the Atomic
Operation
used for a write transaction.
See Atomic transactions (Section E1.1).

AWVALID M Yes

Indicates that the write address channel signals are
valid.

AWREADY S Yes

Indicates that a transfer on the write address channel
can be accepted.

2.3. CV32A6 Design Document 131

CVA6

Write data channel signals (Section A2.3)

Table 2.3 shows the AXI write data channel signals. Unless the description indicates otherwise, a signal
can take any parameter if is supported.

Signal Src Support Description
WID M

Yes
(optional)

The ID tag of the write data transfer.
CVA6 gives the id depending on the type of
transaction.
See Transaction Identifiers (Section A5).

WDATA M Yes

Write data.

WSTRB M

Yes
(optional)

Write strobes, indicate which byte lanes hold valid
data
See Data read and write structure: Write strobes
(Section A3.4.4).

WLAST M Yes

Indicates whether this is the last data transfer in a
write
transaction.

WUSER M

Yes
(optional)

User-defined extension for the write data channel.

WVALID M Yes

Indicates that the write data channel signals are
valid.

WREADY S Yes

Indicates that a transfer on the write data channel
can be
accepted.

132 Chapter 2. Organization of this Document

CVA6

Write Response Channel signals (Section A2.4)

Table 2.4 shows the AXI write response channel signals. Unless the description indicates otherwise, a
signal can take any parameter if is supported.

Signal Src Support Description
BID S

Yes
(optional)

Identification tag for a write response.
CVA6 gives the id depending on the type of
transaction.
See Transaction Identifiers (Section A5).

BRESP S Yes

Write response, indicates the status of a write
transaction.
See Read and write response structure (Section
A3.4.5).

BUSER S

No
(optional)

User-defined extension for the write response
channel.
BUSER= 0b00

BVALID S Yes

Indicates that the write response channel signals are
valid.

BREADY M Yes

Indicates that a transfer on the write response
channel can be
accepted.

Read address channel signals (Section A2.5)

Table 2.5 shows the AXI read address channel signals. Unless the description indicates otherwise, a signal
can take any parameter if is supported.

2.3. CV32A6 Design Document 133

CVA6

Signal Src Support Description
ARID M

Yes
(optional)

Identification tag for a read transaction.
CVA6 gives the id depending on the type of
transaction.
See Transaction Identifiers (Section A5).

ARADDR M

Yes The address of the first transfer in a read transaction.

ARLEN M

Yes
(optional)

Length, the exact number of data transfers in a read
transaction. This information determines the
number of data
transfers associated with the address.
All read transactions performed by CVA6 are of
length less or
equal to ICACHE_LINE_WIDTH/64.

ARSIZE M

Yes
(optional)

Size, the number of bytes in each data transfer in a
read
transaction
See Address structure (Section A3.4.1).

ARBURST M

Yes
(optional)

Burst type, indicates how address changes between
each
transfer in a read transaction.
All Read transactions performed by CVA6 are of
burst type INCR.
(ARBURST = 0b01)

ARLOCK M

Yes
(optional)

Provides information about the atomic
characteristics of
a read transaction.

ARCACHE M

Yes
(optional)

Indicates how a read transaction is required to
progress
through a system.
The memory is always of type Device
Non-bufferable.
(ARCACHE = 0b0000)

ARPROT M

Yes Protection attributes of a read transaction:
privilege, security level, and access type.
The value of ARPROT is always 0b000.

ARQOS M

No
(optional)

Quality of Service identifier for a read transaction.
ARQOS= 0b00

ARREGION M

No
(optional)

Region indicator for a read transaction.
ARREGION= 0b00

ARUSER M

No
(optional)

User-defined extension for the read address channel.
ARUSER= 0b00

ARVALID M

Yes
(optional)

Indicates that the read address channel signals are
valid.

ARREADY S

Yes
(optional)

Indicates that a transfer on the read address channel
can be
accepted.

134 Chapter 2. Organization of this Document

CVA6

Read data channel signals (Section A2.6)

Table 2.6 shows the AXI read data channel signals. Unless the description indicates otherwise, a signal
can take any parameter if is supported.

Signal Src Support Description
RID S

Yes
(optional)

The ID tag of the read data transfer.
CVA6 gives the id depending on the type of
transaction.
See Transaction Identifiers (Section A5).

RDATA S Yes

Read data.

RLAST S Yes

Indicates whether this is the last data transfer in a
read
transaction.

RUSER S

Yes
(optional)

User-defined extension for the read data channel.
Not supported. (RUSER= 0b00)

RVALID S Yes

Indicates that the read data channel signals are valid.

RREADY M Yes

Indicates that a transfer on the read data channel can
be accepted.

Single Interface Requirements: Transaction structure (Section A3.4)

This section describes the structure of transactions. The following sections define the address, data, and response
structures

2.3. CV32A6 Design Document 135

CVA6

Address structure (Section A3.4.1)

The AXI protocol is burst-based. The Manager begins each burst by driving control information and the address of the
first byte in the transaction to the Subordinate. As the burst progresses, the Subordinate must calculate the addresses
of subsequent transfers in the burst.

Burst length

The burst length is specified by:

• ARLEN[7:0], for read transfers

• AWLEN[7:0], for write transfers

The burst length for AXI4 is defined as:

Burst_Length = AxLEN[3:0] + 1

CVA6 has some limitation governing the use of bursts:

• All read transactions performed by CVA6 are of burst length less or equal to
ICACHE_LINE_WIDTH/64.

• All write transactions performed by CVA6 are of burst length equal to 1.

Burst size

The maximum number of bytes to transfer in each data transfer, or beat, in a burst, is specified by:

• ARSIZE[2:0], for read transfers

• AWSIZE[2:0], for write transfers

AXI DATA WIDTH used by CVA6 is 64-bit. For that, the maximum value can be taking by AXSIZE is 3 (8
bytes by transfer).

Burst type

The AXI protocol defines three burst types:

• FIXED

• INCR

• WRAP

The burst type is specified by:

• ARBURST[1:0], for read transfers

• AWBURST[1:0], for write transfers

All transactions performed by CVA6 are of burst type INCR. (AXBURST = 0b01)

Data read and write structure: Write strobes (Section A3.4.4)

The WSTRB[n:0] signals when HIGH, specify the byte lanes of the data bus that contain valid informa-
tion. There is one write strobe for each 8 bits of the write data bus, therefore WSTRB[n] corresponds to
WDATA[(8n)+7: (8n)].

AXI DATA WIDTH used by CVA6 is 64-bit. Therefore, Write Strobe width is equal to eight (n = 7).

136 Chapter 2. Organization of this Document

CVA6

Read and write response structure (Section A3.4.5)

The AXI protocol provides response signaling for both read and write transactions:

• For read transactions, the response information from the Subordinate is signaled on the read data
channel.

• For write transactions, the response information is signaled on the write response channel.

CVA6 does not consider the responses sent by the memory except in the exclusive Access (XRESP[1:0] =
0b01).

Transaction Attributes: Memory types (Section A4)

This section describes the attributes that determine how a transaction should be treated by the AXI subor-
dinate that is connected to the CVA6.

AXCACHE always take 0b0000. The subordinate should be a Device Non-bufferable.

The required behavior for Device Non-bufferable memory is:

• The write response must be obtained from the final destination.

• Read data must be obtained from the final destination.

• Transactions are Non-modifiable.

• Reads must not be prefetched. Writes must not be merged.

Transaction Identifiers (Section A5)

The AXI protocol includes AXI ID transaction identifiers. A Manager can use these to identify separate
transactions that must be returned in order.

The CVA6 identify each type of transaction with a specific ID

For read transaction id can be 0 or 1.

For write transaction id = 1.

For Atomic operation id = 3. This ID must be sent in the write channels and also in the read
channel if the transaction performed requires response data.

AXI Ordering Model (Section A6)

AXI ordering model overview (Section A6.1)

The AXI ordering model is based on the use of the transaction identifier, which is signaled on ARID or
AWID.

Transaction requests on the same channel, with the same ID and destination are guaranteed to remain in
order.

Transaction responses with the same ID are returned in the same order as the requests were issued.

Write transaction requests, with the same destination are guaranteed to remain in order. Because all write
transaction performed by CVA6 have the same ID.

CVA6 can perform multiple outstanding write address transactions.

2.3. CV32A6 Design Document 137

CVA6

CVA6 cannot perform a Read transaction and a Write one at the same time. Therefore there no ordering
problems between Read and write transactions.

The ordering model does not give any ordering guarantees between:

• Transactions from different Managers

• Read Transactions with different IDs

• Transactions to different Memory locations

If the CVA6 requires ordering between transactions that have no ordering guarantee, the Manager must
wait to receive a response to the first transaction before issuing the second transaction.

Memory locations and Peripheral regions (Section A6.2)

The address map in AMBA is made up of Memory locations and Peripheral regions. But the AXI is
associated to the memory interface of CVA6.

A Memory location has all of the following properties:

• A read of a byte from a Memory location returns the last value that was written to that byte location.

• A write to a byte of a Memory location updates the value at that location to a new value that is
obtained by a subsequent read of that location.

• Reading or writing to a Memory location has no side-effects on any other Memory location.

• Observation guarantees for Memory are given for each location.

• The size of a Memory location is equal to the single-copy atomicity size for that component.

Transactions and ordering (Section A6.3)

A transaction is a read or a write to one or more address locations. The locations are determined by
AxADDR and any relevant qualifiers such as the Non-secure bit in AxPROT.

• Ordering guarantees are given only between accesses to the same Memory location or Peripheral
region.

• A transaction to a Peripheral region must be entirely contained within that region.

• A transaction that spans multiple Memory locations has multiple ordering guarantees.

Transaction performed by CVA6 is of type Device. Because AxCACHE[1] deasserted.

Device transactions can be used to access Peripheral regions or Memory locations.

A write transaction performed by CVA6 is Non-bufferable (It is possible to send an early response to
Bufferable write). Because AxCACHE[0] deasserted.

138 Chapter 2. Organization of this Document

CVA6

Ordered write observation (Section A6.8)

To improve compatibility with interface protocols that support a different ordering model, a Subordinate
interface can give stronger ordering guarantees for write transactions. A stronger ordering guarantee is
known as Ordered Write Observation.

The CVA6 AXI interface exhibits Ordered Write Observation, so the Ordered_Write_Observation property
is True.

An interface that exhibits Ordered Write Observation gives guarantees for write transactions that are not
dependent on the destination or address:

• A write W1 is guaranteed to be observed by a write W2, where W2 is issued after W1, from the same
Manager, with the same ID.

Atomic transactions (Section E1.1)

AMBA 5 introduces Atomic transactions, which perform more than just a single access and have an op-
eration that is associated with the transaction. Atomic transactions enable sending the operation to the
data, permitting the operation to be performed closer to where the data is located. Atomic transactions are
suited to situations where the data is located a significant distance from the agent that must perform the
operation.

CVA6 support just the AtomicLoad and AtomicSwap transaction. So AWATOP[5:4] can be 00, 10 or 11

CVA6 perform only little-endian operation. So AWATOP[3] = 0

For AtomicLoad, CVA6 support all arithmetic operations encoded on the lower-order AWATOP[2:0] sig-
nals

2.3.7 Glossary

• VLEN: Virtual address lengh

• XLEN: RISC-V processor data lengh

• ALU: Arithmetic/Logic Unit

• ASIC: Application-Specific Integrated Circuit

• Byte: 8-bit data item

• CPU: Central Processing Unit, processor

• CSR: Control and Status Register

• Custom extension: Non-Standard extension to the RISC-V base instruction set (RISC-V Instruction Set Manual,
Volume I: User-Level ISA)

• EXE: Instruction Execute

• FPGA: Field Programmable Gate Array

• FPU: Floating Point Unit

• Halfword: 16-bit data item

• Halfword aligned address: An address is halfword aligned if it is divisible by 2

• ID: Instruction Decode

• IF: Instruction Fetch

2.3. CV32A6 Design Document 139

CVA6

• ISA: Instruction Set Architecture

• KGE: kilo gate equivalents (NAND2)

• LSU: Load Store Unit

• M-Mode: Machine Mode (RISC-V Instruction Set Manual, Volume II: Privileged Architecture)

• OBI: Open Bus Interface

• PC: Program Counter

• PULP platform: Parallel Ultra Low Power Platform (<https://pulp-platform.org>)

• RV32C: RISC-V Compressed (C extension)

• RV32F: RISC-V Floating Point (F extension)

• SIMD: Single Instruction/Multiple Data

• Standard extension: Standard extension to the RISC-V base instruction set (RISC-V Instruction Set Manual,
Volume I: User-Level ISA)

• WARL: Write Any Values, Reads Legal Values

• WB: Write Back of instruction results

• WLRL: Write/Read Only Legal Values

• Word: 32-bit data item

• Word aligned address: An address is word aligned if it is divisible by 4

• WPRI: Reserved Writes Preserve Values, Reads Ignore Values

140 Chapter 2. Organization of this Document

https://pulp-platform.org

	CORE-V Nomenclature
	Organization of this Document
	OpenHW Group CVA6 User Manual
	Introduction
	Scope and Purpose

	PC Generation
	Branch Prediction

	Instruction Fetch Stage
	Fetch FIFO

	Instruction Decode
	Instruction Re-aligner
	Compressed Decoder
	Decoder

	Issue Stage
	Issue
	Read Operands
	Scoreboard

	Execute Stage
	ALU
	Branch Unit
	Load Store Unit (LSU)
	LSU Bypass {#par:lsu_bypass}
	Load Unit {#par:load_unit}
	Store Unit {#par:store_unit}
	Store Buffer {#par:store_buffer}
	Memory Management Unit (MMU) {#par:mmu}
	Page Table Walker (PTW)

	PMA/PMP Checks
	MMU Implementation Details
	Multiplier
	CSR Buffer

	Commit Stage
	CVA6 System on Chip (SoC)
	Memory Map
	Platform-Level Interrupt Controller (PLIC)

	CVA6 Testharness
	Ariane
	Debug
	Master
	Slave

	CLINT
	Bootrom
	SRAM
	GPIO
	UART
	PLIC
	Timer
	Ethernet
	SPI

	Indices and tables
	Documentation

	CVA6 Requirement Specification
	License
	Introduction
	Scope
	Scope of the IP
	Initial Release
	Possible Future Releases

	References
	Applicable specifications
	Reference documents

	Functional requirements
	General requirement
	RISC-V standard instructions
	Privileges and virtual memory
	CSR
	Performance counters
	Cache requirements
	L1 write-through data cache
	L1 Instruction cache

	FENCE.T custom instruction

	PPA targets
	Interface requirements
	Memory bus
	Debug
	Interrupts
	Coprocessor interface
	Multi-core interface

	Design rules
	List of abbreviations

	CV32A6 Design Document
	Introduction
	License
	Standards Compliance
	Documentation framework
	Contributors

	CV32A6 Subsystem
	Instantiation
	Functionality
	Architecture and Modules

	FRONTEND Module
	Description
	Functionality
	PC Generation stage
	Fetch Stage

	Architecture and Submodules
	Instr_realign submodule
	Instr_queue submodule
	Instr_scan submodule
	BHT (Branch History Table) submodule
	BTB (Branch Target Buffer) submodule
	RAS (Return Address Stack) submodule

	RV32 Instructions
	Introduction
	General purpose registers
	RV32I Base Integer Instruction Set
	Integer Register-Immediate Instructions
	Integer Register-Register Instructions
	Control Transfer Instructions
	Load and Store Instructions
	Memory Ordering
	Environment Call and Breakpoints

	RV32M Multiplication and Division Instructions
	Multiplication Operations
	Division Operations

	RV32A Atomic Instructions
	Load-Reserved/Store-Conditional Instructions
	Atomic Memory Operations

	RV32C Compressed Instructions
	Integer Computational Instructions
	Control Transfer Instructions
	Load and Store Instructions

	RV32Zicsr Control and Status Register Instructions
	RV32Zifencei Instruction-Fetch Fence

	CV32A6_CSR programmers view
	Register Summary
	Register Descriptions
	Floating-Point Accrued Exceptions (fflags)
	Floating-Point Dynamic Rounding Mode (frm)
	Floating-Point Control and Status Register (fcsr)
	Supervisor Status (sstatus)
	Supervisor Interrupt Enable (sie)
	Supervisor Trap Vector Base Address (stvec)
	Supervisor Counter Enable (scounteren)
	Supervisor Scratch (sscratch)
	Supervisor Exception Program Counter (sepc)
	Supervisor Cause (scause)
	Supervisor Trap Value (stval)
	Supervisor Interrupt Pending (sip)
	Supervisor Address Translation and Protection (satp)
	Machine Status (mstatus)
	Machine ISA (misa)
	Machine Exception Delegation (medeleg)
	Machine Interrupt Delegation (mideleg)
	Machine Interrupt Enable (mie)
	Machine Trap Vector (mtvec)
	Machine Counter Enable (mcountern)
	Hardware Performance-Monitoring Event Selector (hpmevent[6])
	Machine Scratch (mscratch)
	Machine Exception Program Counter (mepc)
	Machine Cause (mcause)
	Machine Trap Value (mtval)
	Machine Interrupt Pending (mip)
	Physical Memory Protection Config 0 (pmpcfg0)
	Physical Memory Protection Config 1 (pmpcfg1)
	Physical Memory Protection Config 2 (pmpcfg2)
	Physical Memory Protection Config 3 (pmpcfg3)
	Physical Memory Protection Address (pmpaddr[16])
	Instuction Cache (icache)
	Data Cache (dcache)
	Trigger Select (tselect)
	Trigger Data 1 (tdata1)
	Trigger Data 2 (tdata2)
	Trigger Data 3 (tdata3)
	Trigger Info (tinfo)
	Debug Control and Status (dcsr)
	Debug PC (dpc)
	Debug Scratch Register (dscratch[2])
	ftran
	M-mode Cycle counter (mcycle)
	Machine Instruction Retired counter (minstret)
	L1 Inst Cache Miss (ml1_icache_miss)
	L1 Data Cache Miss (ml1_dcache_miss)
	ITLB Miss (mitlb_miss)
	DTLB Miss (mdtlb_miss)
	Loads (mload)
	Stores (mstore)
	Taken Exceptions (mexception)
	Exception Return (mexception_ret)
	Software Change of PC (mbranch_jump)
	Procedure Call (mcall)
	Procedure Return (mret)
	Branch mis-predicted (mmis_predict)
	Scoreboard Full (msb_full)
	Instruction Fetch Queue Empty (mif_empty)
	Upper 32-bits of M-mode Cycle counter (mcycleh)
	Upper 32-bits of Machine Instruction Retired counter (minstreth)
	Upper 32-bits of Machine Hardware Performance Monitoring Counter (mhpmcounterh[6])
	Cycle counter (cycle)
	Timer (time)
	Instruction Retired counter (instret)
	L1 Inst Cache Miss (l1_icache_miss)
	L1 Data Cache Miss (l1_dcache_miss)
	ITLB Miss (itlb_miss)
	DTLB Miss (dtlb_miss)
	Loads (load)
	Stores (store)
	Taken Exceptions (exception)
	Exception Return (exception_ret)
	Software Change of PC (branch_jump)
	Procedure Call (call)
	Procedure Return (ret)
	Branch mis-predicted (mis_predict)
	Scoreboard Full (sb_full)
	Instruction Fetch Queue Empty (if_empty)
	Upper 32-bits of Cycle counter (cycleh)
	Upper 32-bit of Timer (timeh)
	Upper 32-bits of Instruction Retired counter (instreth)
	Machine Vendor ID (mvendorid)
	Machine Architecture ID (marchid)
	Machine Implementation ID (mimpid)
	Machine Hardware Thread ID (mhartid)

	AXI
	Introduction
	About the AXI4 protocol
	AXI4 and CVA6

	Signal Description (Section A2)
	Global signals (Section A2.1)
	Write address channel signals (Section A2.2)
	Write data channel signals (Section A2.3)
	Write Response Channel signals (Section A2.4)
	Read address channel signals (Section A2.5)
	Read data channel signals (Section A2.6)

	Single Interface Requirements: Transaction structure (Section A3.4)
	Address structure (Section A3.4.1)
	Data read and write structure: Write strobes (Section A3.4.4)
	Read and write response structure (Section A3.4.5)

	Transaction Attributes: Memory types (Section A4)
	Transaction Identifiers (Section A5)
	AXI Ordering Model (Section A6)
	AXI ordering model overview (Section A6.1)
	Memory locations and Peripheral regions (Section A6.2)
	Transactions and ordering (Section A6.3)
	Ordered write observation (Section A6.8)

	Atomic transactions (Section E1.1)

	Glossary

