
OpenHW Group Specification: Core-V
eXtension interface (CV-X-IF) -

Development
Release v1.0.0-rc.3-dev.1

OpenHW Group

Apr 18, 2024

CONTENTS:

1 Acknowledgements 1

2 Contributors 3

3 Changelog 5
3.1 v1.0.0-rc.2: Second Release Candidate (post public review) . 5
3.2 v1.0.0-rc.1: First release candidate . 5
3.3 v0.2.0: Reworked specification . 5
3.4 v0.1.0: Initial draft . 5

4 Introduction 7
4.1 History . 7
4.2 License . 8
4.3 Standards Compliance . 8
4.4 Glossary . 8

5 eXtension Interface 11
5.1 CV-X-IF . 11
5.2 Parameters . 11
5.3 Major features . 13
5.4 Operating principle . 14
5.5 Interfaces . 15

5.5.1 Clocking and Signal Stability . 15
5.5.2 Identification . 15
5.5.3 Multiple coprocessors . 16
5.5.4 Multiple Harts . 16
5.5.5 Compressed interface . 16
5.5.6 Issue interface . 18
5.5.7 Register interface . 19
5.5.8 Commit interface . 21
5.5.9 Memory (request/response) interface . 23
5.5.10 Memory result interface . 23
5.5.11 Result interface . 23

5.6 Interface dependencies . 24
5.7 Handshake rules . 25
5.8 Signal dependencies . 25
5.9 System level deadlock avoidance . 26

6 Appendix 27
6.1 SystemVerilog example . 27
6.2 Coprocessor recommendations . 27

i

6.3 Recommendations for implementing multiple coprocessors on a shared interface 27
6.4 Timing recommendations . 28
6.5 Verification . 29

Bibliography 31

Index 33

ii

CHAPTER

ONE

ACKNOWLEDGEMENTS

The specification has in part been supported by the TRISTAN project.

The TRISTAN project, nr. 101095947 is supported by Chips Joint Undertaking (CHIPS-JU) and its members Austria,
Belgium, Bulgaria, Croatia, Cyprus, Czechia, Germany, Denmark, Estonia, Greece, Spain, Finland, France, Hungary,
Ireland, Israel, Iceland, Italy, Lithuania, Luxembourg, Latvia, Malta, Netherlands, Norway, Poland, Portugal, Romania,
Sweden, Slovenia, Slovakia, Turkey.

1

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

2 Chapter 1. Acknowledgements

CHAPTER

TWO

CONTRIBUTORS

The specification and its repository have received contributions from several authors:

• christian-herber-nxp

110 contributions

• davideschiavone

54 contributions

• Silabs-ArjanB

50 contributions

• ganoam

28 contributions

• DBees

6 contributions

• davidmallasen

5 contributions

• ASintzoff

5 contributions

• MikeOpenHWGroup

4 contributions

• moimfeld

2 contributions

• michael-platzer

1 contribution

3

https://github.com/christian-herber-nxp
https://github.com/davideschiavone
https://github.com/Silabs-ArjanB
https://github.com/ganoam
https://github.com/DBees
https://github.com/davidmallasen
https://github.com/ASintzoff
https://github.com/MikeOpenHWGroup
https://github.com/moimfeld
https://github.com/michael-platzer

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

4 Chapter 2. Contributors

CHAPTER

THREE

CHANGELOG

3.1 v1.0.0-rc.2: Second Release Candidate (post public review)

Released on 2024-04-15 - GitHub

3.2 v1.0.0-rc.1: First release candidate

Released on 2024-02-16 - GitHub

3.3 v0.2.0: Reworked specification

Released on 2024-02-16 - GitHub

3.4 v0.1.0: Initial draft

Released on 2024-02-13 - GitHub

5

https://github.com/openhwgroup/core-v-xif/releases/tag/v1.0.0-rc.2
https://github.com/openhwgroup/core-v-xif/releases/tag/v1.0.0-rc.1
https://github.com/openhwgroup/core-v-xif/releases/tag/v0.2.0
https://github.com/openhwgroup/core-v-xif/releases/tag/v0.1.0

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

6 Chapter 3. Changelog

CHAPTER

FOUR

INTRODUCTION

The Core-V eXtension interface, also called CV-X-IF, is an interface aimed at extending a CPU with (custom
or standardized) instructions implemented in a coprocessor.

It can be used to implement standard RISC-V extensions as for example B (Bit Manipulation), M (Integer Multiplication
and Division), F (Single-Precision Floating Point) and D (Double-Precision Floating Point). It can also be used to
implement custom extensions. Extensions implemented on the interface are unprivileged, i.e. implementing privileged
extensions like H (Hypervisor) is not supported.

The goal of CV-X-IF is to enable the design and verification of instruction extensions in a coprocessor in a standardized
manner without the need to modify the CPU itself. Having a common interface allows designers of RISC-V CPUs
to reuse existing co-processor and vice versa. Please note that the CPU and coprocessor can have different license
models. For example, the coprocessor could be closed source, connected to an open-source CPU.

4.1 History

The idea of an extension interface originated from the PULP Project at ETH Zurich and University of Bologna, where
it was used to decouple the floating-point unit and the CPU design. The first version of this interface was called apu
interface, and it was implemented in the CV32E40P to communicate with the CVFPU coprocessor. However,
this interface was tightly coupled with the CPU pipeline, which meant that any other new coprocessor extension had
to modify the CPU pipeline and decoder. Moreover, it was designed for a specific use-case. Later, the PULP team
developed a more advanced interface for the CVA6 project, which could handle more complex scenarios required by
the ARA vector machine. This interface was further refined in the Snitch project, where it was made more modular and
independent from the pipeline, requiring only minimal changes to the decoder of the CPU. The aim of CV-X-IFwithin
the OpenHW Group is to take this interface to the next level and eliminate all dependencies between the CPU and the
coprocessor. The interface is not only agnostic from the decoder and pipeline perspective, but also from the license
and codebase standpoint, with the goal of becoming the standard interface that will enable wide reuse of RISC-V IPs.
The first CPU implementing such interface is the CV32E40X, which can be found at https://github.com/openhwgroup/
cv32e40x. The interface was also added as an option to CVA6, which can be found at https://github.com/openhwgroup/
cva6.

7

https://github.com/openhwgroup/cv32e40x
https://github.com/openhwgroup/cv32e40x
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

4.2 License

Copyright © 2021-2024 OpenHW Group.

SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1

Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file except in compliance
with the License, or, at your option, the Apache License version 2.0.

You may obtain a copy of the License at

https://solderpad.org/licenses/SHL-2.1/

Unless required by applicable law or agreed to in writing, any work distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

4.3 Standards Compliance

The CV-X-IF specification depends on the unprivileged [RISC-V-UNPRIV] and privileged [RISC-V-PRIV] RISC-V
specification.

4.4 Glossary

clk
Clock signal

ISA
Instruction set architecture

CPU
Central processing unit

ALU
Arithmetic logic unit

CSR
Control and status register

GPR
General purpose register

PMP
Physical memory protection

PMA
Physical memory attributes

MMU
Memory management unit

NMI
Non-maskable interrupt

UVM
Universal Verification Methodology

8 Chapter 4. Introduction

https://solderpad.org/licenses/SHL-2.1/

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

RTL
Register transfer language

ECS
Extension Context Status

4.4. Glossary 9

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

10 Chapter 4. Introduction

CHAPTER

FIVE

EXTENSION INTERFACE

The eXtension interface enables extending the CPU with (custom or standardized) instructions without the need to
change the RTL of the CPU itself. An extension can be provided in a separate module external to the CPU and is
integrated at system level by connecting it to the eXtension interface.

The eXtension interface provides low latency (tightly integrated) read and write access to the CPU register file. All
opcodes which are not used (i.e. considered to be invalid) by the CPU can be used for extensions. It is recommended
however that custom instructions do not use opcodes that are reserved/used by RISC-V International.

The eXtension interface enables extension of the CPU with:

• Custom ALU type instructions.

• Custom CSRs and related instructions.

Control-Transfer type instructions (e.g. branches and jumps) are not supported via the eXtension interface.

5.1 CV-X-IF

The terminology eXtension interface and CV-X-IF are used interchangeably.

5.2 Parameters

The CV-X-IF specification contains two kinds of parameters. The first kind of parameters is configured for the copro-
cessor. Not all possible values of parameter might be supported by the CPU, in which case it determines the legal
values.

The second kind of parameter is a system parameter, i.e. it is determined based on the configuration of the CPU and
the coprocessor. This includes X_ID_WIDTH and X_HARTID_WIDTH.

11

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

Table 5.1: Interface parameters

Name Type/Range Default Description
X_NUM_RS int unsigned

(2..3)
2 Number of register file read ports that can be used

by the eXtension interface. Legal values are deter-
mined by the CPU.

X_ID_WIDTH int unsigned
(3..32)

4 Identification (id) width for the eXtension inter-
face.

X_RFR_WIDTH int unsigned
(32, 64)

32 Register file read access width for the eXtension
interface. Legal values are determined by the
CPU. Must be at least XLEN. If XLEN = 32, then
the legal values are 32 and 64 (e.g. for RV32P). If
XLEN = 64, then the legal value is (only) 64.

X_RFW_WIDTH int unsigned
(32, 64)

32 Register file write access width for the eXten-
sion interface. Legal values are determined by the
CPU. Must be at least XLEN. If XLEN = 32, then
the legal values are 32 and 64 (e.g. for RV32D). If
XLEN = 64, then the legal value is (only) 64.

X_NUM_HARTS int unsigned
(1..2^MXLEN)

1 Number of harts (hardware threads) associated
with the interface. Legal values are determined by
the CPU.

X_HARTID_WIDTH int unsigned
(1..MXLEN)

1 Width of hartid signals. Must be at least 1.
Limited by the RISC-V privileged specification
to MXLEN. Legal values are determined by the
CPU.

X_MISA logic [25:0] 32’b0 MISA extensions implemented on the eXtension
interface. Legal values are determined by the
CPU.

X_DUALREAD int unsigned
(0..3)

0 Is dual read supported? 0: No, 1: Yes, for rs1, 2:
Yes, for rs1 - rs2, 3: Yes, for rs1 - rs3. Legal
values are determined by the CPU.

X_DUALWRITE int unsigned
(0..1)

0 Is dual write supported? 0: No, 1: Yes. Legal
values are determined by the CPU.

X_ISSUE_REGISTER_SPLIT int unsigned
(0..1)

0 Are the issue interface and register interface split?
0: No, 1: Yes. Legal values are determined by the
CPU. If 1, registers are provided after the issue of
the instruction. If 0, registers are provided at the
same time as issue.

The CPU shall set the misa.Extensions field to a value that is the result of an or operation of its own Extensions and
the X_MISA parameter. Not all bits of misa.Extensions will be legal for a coprocessor to set, e.g. if this extension
is already implemented in the CPU or if it is an extension not possible to implement as part of a coprocessor like
privileged extensions.

Note: A CPU shall clearly document which X_MISA values it can support and there is no requirement that a CPU can
support all possible X_MISA values. For example, if a CPU only supports machine mode, then it is not reasonable to
expect that the CPU will additionally support user mode by just setting the X_MISA[20] (U bit) to 1.

Additionally, the following type definitions are defined to improve readability of the specification and ensure consis-
tency between the interfaces:

12 Chapter 5. eXtension Interface

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

Table 5.2: Interface type definitions

Name Definition Description

readregflags_t
logic
[X_NUM_RS+X_DUALREAD-
1:0]

Vector with a flag per possible source register. This de-
pends upon the number of read ports and their ability to
read register pairs. The bit positions map to registers as
follows: Low indices correspond to low operand num-
bers, and the even part of the pair has a lower index than
the odd one.

writeregflags_t
logic [X_DUALWRITE:0] Bit vector indicating destination registers for write back.

The width depends on the ability to perform dual write.
If X_DUALWRITE = 0, this signal is a single bit. Bit 1 may
only be set when bit 0 is also set. In this case, the vector
indicates that a register pair is used.

id_t
logic [X_ID_WIDTH-1:0] Identification of the offloaded instruction. See Identifi-

cation for details on the identifiers

hartid_t
logic [X_HARTID_WIDTH-
1:0]

Identification of the hart offloading the instruction. Only
relevant in multi-hart systems. Hart IDs are not required
to to be numbered continuously. The hart ID would usu-
ally correspond to mhartid, but it is not required to do
so.

5.3 Major features

The major features of CV-X-IF are:

• Minimal requirements on extension instruction encoding.

If an extension instruction relies on reading from or writing to the CPU’s general purpose register file,
then the standard RISC-V bitfield locations for rs1, rs2, rs3, rd as used for non-compressed instructions
([RISC-V-UNPRIV]) must be used. Bitfields for unused read or write operands can be fully repurposed. Exten-
sion instructions can either use the compressed or uncompressed instruction format. For offloading compressed
instructions the coprocessor must provide the CPU with the related non-compressed instructions.

• Support for dual write-back instructions (optional, based on X_DUALWRITE).

CV-X-IF optionally supports implementation of (custom or standardized) ISA extensions mandating dual register
file write-backs. Dual write-back is supported for even-odd register pairs (Xn and Xn+1 with n being an even
number extracted from instruction bits [11:7]).

Dual register file write-back is only supported for XLEN = 32.

• Support for dual read instructions (per source operand) (optional, based on X_DUALREAD).

CV-X-IF optionally supports implementation of (custom or standardized) ISA extensions mandating dual register
file reads. Dual read is supported for even-odd register pairs. Dual read can therefore provide up to six 32-bit
operands per instruction.

When a dual read is performed with n = 0, the entire operand is 0, i.e. x1 shall not need to be accessed by the
CPU.

Dual register file read is only supported for XLEN = 32.

• Support for ternary operations.

5.3. Major features 13

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

CV-X-IF optionally supports ISA extensions implementing instructions which use three source operands. RISC-
V [RISC-V-UNPRIV] can implement ternary operations using the R-type instruction format (using rd as rs3)
or with the R4-type instruction format.

• Support for instruction speculation.

CV-X-IF indicates whether offloaded instructions are allowed to be committed (or should be killed).

Note: The interface does not provide a mechanism for providing and synchronizing the Extension Context Status
(ECS, see [RISC-V-PRIV]). ECS might be needed if an extension has context that needs to be switched upon a task
switch. Ensuring that the behavior of the overall system is compliant to [RISC-V-PRIV] is the responsibility of an
integrator. It is the intention that future versions of this specification provide a general mechanism to deal with ECS.

CV-X-IF consists of the following interfaces:

• Compressed interface. Signaling of compressed instruction to be offloaded.

• Issue (request/response) interface. Signaling of the uncompressed instruction to be offloaded.

• Register interface. Signaling of GPRs and CSRs.

• Commit interface. Signaling of control signals related to whether instructions can be committed or should be
killed.

• Result interface. Signaling of the instruction result(s).

5.4 Operating principle

CPU will attempt to offload every (compressed or non-compressed) instruction that it does not recognize as a legal
instruction itself. In case of a compressed instruction the coprocessor must first provide the CPU with a matching un-
compressed (i.e. 32-bit) instruction using the compressed interface. This non-compressed instruction is then attempted
for offload via the issue interface.

Offloading of the (non-compressed, 32-bit) instructions happens via the issue interface. The external coprocessor
can decide to accept or reject the instruction offload. In case of acceptation the coprocessor will further handle the
instruction. In case of rejection the CPU will raise an illegal instruction exception. The CPU provides the required
register file operand(s) to the coprocessor via the register interface. If an offloaded instruction uses any of the register file
sources rs1, rs2, then these are always encoded in instruction bits [19:15] and [24:20], respectively. If an offloaded
instruction uses the register file source rs3, then these are encoded in instruction bits [31:27] if the instruction uses one
of the major opcodes instruction uses the major opcodes MADD, MSUB, NMSUB, or NMADD (R4-type). Otherwise,
rs3 is expected to be encoded in bits [11:7].

Note: The fused multiply add instructions of the floating point unit make use of the R4 instruction format. As this
format consumes significant encoding space, other standard and custom extensions are expected to follow the R-type
encoding, multiplexing rd and rs3.

The coprocessor only needs to wait for the register file operands that a specific instruction actually uses. The coprocessor
informs the core to which register(s) in the register file it will write-back. The CPU uses this information to track data
dependencies between instructions.

Offloaded instructions are speculative; CPU has not necessarily committed to them yet and might decide to kill them
(e.g. because they are in the shadow of a taken branch or because they are flushed due to an exception in an earlier
instruction). Via the commit interface the CPU will inform the coprocessor about whether an offloaded instruction will
either need to be killed or whether the CPU will guarantee that the instruction is no longer speculative and is allowed
to be committed.

14 Chapter 5. eXtension Interface

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

The final result of an accepted offloaded instruction can be written back into the coprocessor itself or into the CPU’s
register file. Either way, the result interface is used to signal to the CPU that the instruction has completed. Apart from
a possible write-back into the register file, the result interface transaction is for example used in the CPU to increment
the minstret CSR, to implement the fence instructions and to judge if instructions before a WFI instruction have fully
completed (so that sleep mode can be entered if needed).

In short: From a functional perspective it should not matter whether an instruction is handled inside the CPU or inside
a coprocessor. In both cases the instructions need to obey the same instruction dependency rules, memory consistency
rules, load/store address checks, fences, etc.

5.5 Interfaces

This section describes the interfaces of CV-X-IF. Port directions are described as seen from the perspective of the
CPU. The coprocessor will have opposite pin directions. Stated signals names are not mandatory, but it is highly
recommended to at least include the stated names as part of actual signal names. It is for example allowed to add
prefixes and/or postfixes (e.g. x_ prefix or _i, _o postfixes) or to use different capitalization. A name mapping should
be provided if non obvious renaming is applied.

5.5.1 Clocking and Signal Stability

The interfaces are required to be synchronous to a common clock (clk). The signals of the interface are sampled on
the positive edge of clk.

When stability of signal is referred to in the specification of the interface transactions the following definition is fol-
lowed. A signal is considered stable, if to consecutive samples of the signal have the same value. A signal’s value may
change between the samples and still be considered stable.

5.5.2 Identification

Most interfaces of CV-X-IF use a signal called id, which serves as a unique identification number for offloaded in-
structions. The same id value shall be used for all transaction packets on all interfaces that logically relate to the same
instruction. An id value can be reused after an earlier instruction related to the same id value is no longer consider
in-flight. The id values for in-flight offloaded instructions are required to be unique. The id values are required to
be incremental from one issue transaction to the next. The increment may be greater than one. If the next id would
be greater than the maximum value (2**X_ID_WIDTH - 1), the value of id wraps. A new id value is not allowed to
be greater than the oldest in-flight instruction, if a wrap has occurred since the oldest in-flight instruction was issued.
If the oldest in-flight instruction is 𝑖𝑑𝑜, and the newest is 𝑖𝑑𝑛, then the next instruction with 𝑖𝑑𝑛+1 must satisfy the
following conditions:

𝑖𝑑𝑛+1 > 𝑖𝑑𝑛 or 𝑖𝑑𝑛+1 < 𝑖𝑑𝑜, if 𝑖𝑑𝑛 > 𝑖𝑑𝑜

𝑖𝑑𝑛+1 > 𝑖𝑑𝑛 and 𝑖𝑑𝑛+1 < 𝑖𝑑𝑜, if 𝑖𝑑𝑛 < 𝑖𝑑𝑜

The first condition applying to cases where the 𝑖𝑑𝑛 has not wrapped since the oldest in-flight instruction was issued,
and the second where one wrap occurred between 𝑖𝑑𝑜 and 𝑖𝑑𝑛. The coprocessor is not required to check the validity
of id values under these constraints. This has to be guaranteed by design of the CPU.

Note: IDs are not required to be incremental to support scenarios, in which a coprocessor does not see the entire
instruction stream. This can be e.g. because offloaded instructions are routed towards different coprocessors.

To make sure feasible id values are available, X_ID_WIDTH needs to be sufficiently large. This can be achieved by
calculating the maximum id increase during the lifetime of the longest executing instruction.

5.5. Interfaces 15

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

id values can only be introduced by the issue interface.

An id becomes in-flight in the first cycle that issue_valid is 1 for that id.

An id ends being in-flight when one of the following scenarios apply:

• the corresponding issue request transaction is retracted.

• the corresponding issue request transaction is not accepted and the corresponding commit handshake has been
performed.

• the corresponding result transaction has been performed.

For the purpose of relative identification, an instruction is considered to be preceding another instruction, if it was
accepted in an issue transaction at an earlier time. The other instruction is thus succeeding the earlier one.

5.5.3 Multiple coprocessors

This specification defines a point-to-point connection between a CPU and a coprocessor, that is defined in a way that
facilitates the integration of multiple coprocessors. The combined interface of the coprocessors must adhere to this
specification and thus must behave like a single coprocessor from the CPU point of view. Any implementation is
correct, if the CPU is not able to determine that multiple coprocessors are connected. For recommendations, please
refer to Recommendations for implementing multiple coprocessors on a shared interface

5.5.4 Multiple Harts

The interface can be used in systems with multiple harts (hardware threads). This includes scenarios with multiple
CPUs and multi-threaded implementations of CPUs. RISC-V distinguishes between harts using hartid, which we
also introduce to the interface. It is required to identify the source of the offloaded instruction, as multiple harts might
be able to offload via a shared interface. No duplicates of the combination of hartid and id may be in flight at any
time within one instance of the interface. Any state within the coprocessor (e.g. custom CSRs) must be duplicated
according to the number of harts (indicated by the X_NUM_HARTS parameter). Execution units may be shared among
threads of the coprocessor, and conflicts around such resources must be managed by the coprocessor.

Note: The interface can be used in scenarios where the CPU is superscalar, i.e. it can issue more than one instruction
per cycle. In such scenarios, the coprocessor is usually required to also be able to accept more than one instruction per
cycle. Our expectation is that implementers will duplicate the interface according to the issue width.

5.5.5 Compressed interface

Table 5.3 describes the compressed interface signals.

16 Chapter 5. eXtension Interface

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

Table 5.3: Compressed interface signals

Signal Type Direc-
tion
(CPU)

Description

compressed_valid logic output Compressed request valid. Request to uncompress a
compressed instruction.

compressed_ready logic input Compressed request ready. The transactions signaled via
compressed_req and compressed_resp are accepted
when compressed_valid and compressed_ready
are both 1.

compressed_req x_compressed_req_t output Compressed request packet.
compressed_resp x_compressed_resp_t input Compressed response packet.

Table 5.4 describes the x_compressed_req_t type.

Table 5.4: Compressed request type

Signal Type Description
instr logic [15:0] Offloaded compressed instruction.
hartid hartid_t Identification of the hart offloading the instruction.

The instr[15:0] signal is used to signal compressed instructions that are considered illegal by CPU itself. A copro-
cessor can provide an uncompressed instruction in response to receiving this.

Note: It is not required for a CPU to ensure that the offloaded instruction is a valid 16-bit encoding.

A compressed request transaction is defined as the combination of all compressed_req signals during which
compressed_valid is 1 and compressed_req remains unchanged. A CPU is allowed to retract its compressed
request transaction before it is accepted with compressed_ready = 1 and it can do so in the following ways:

• Set compressed_valid = 0.

• Keep compressed_valid = 1, but change any of the signals in compressed_req.

The signals in compressed_req are valid when compressed_valid is 1. These signals remain stable during a com-
pressed request transaction.

Table 5.5 describes the x_compressed_resp_t type.

Table 5.5: Compressed response type

Signal Type Description
instr logic [31:0] Uncompressed instruction.
accept logic Is the offloaded compressed instruction (id) accepted by the copro-

cessor?

The signals in compressed_resp are valid when compressed_valid and compressed_ready are both 1. There are
no stability requirements.

The CPU will attempt to offload every compressed instruction that it does not recognize as a legal instruction itself. A
CPU might also attempt to offload compressed instructions that it does recognize as legal instructions itself.

A coprocessor may only accept valid 16-bit instructions, i.e. bits [1:0] must not be binary 11.

5.5. Interfaces 17

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

The CPU shall cause an illegal instruction fault when attempting to execute (commit) an instruction that:

• is considered to be valid by the CPU and accepted by the coprocessor (accept = 1).

• is considered neither to be valid by the CPU nor accepted by the coprocessor (accept = 0).

The accept signal of the compressed interface merely indicates that the coprocessor accepts the compressed instruction
as an instruction that it implements and translates into its uncompressed counterpart. Typically an accepted transaction
over the compressed interface will be followed by a corresponding transaction over the issue interface, but there is no
requirement on the CPU to do so (as the instructions offloaded over the compressed interface and issue interface are
allowed to be speculative). Only when an accept is signaled over the issue interface, then an instruction is considered
accepted for offload.

Explicitly, the coprocessor shall not execute the instruction after receiving it via the compressed interface.

The coprocessor shall not take the mstatus based extension context status (see ([RISC-V-PRIV])) into account when
generating the accept signal on its compressed interface (but it shall take it into account when generating the accept
signal on its issue interface).

5.5.6 Issue interface

Table 5.6 describes the issue interface signals.

Table 5.6: Issue interface signals

Signal Type Direc-
tion
(CPU)

Description

issue_valid logic output Issue request valid. Indicates that CPU wants to offload
an instruction.

issue_ready logic input Issue request ready. The transaction signaled via
issue_req and issue_resp is accepted when
issue_valid and issue_ready are both 1.

issue_req x_issue_req_t output Issue request packet.
issue_resp x_issue_resp_t input Issue response packet.

Table 5.7 describes the x_issue_req_t type.

Table 5.7: Issue request type

Signal Type Description
instr logic [31:0] Offloaded instruction.
hartid hartid_t Identification of the hart offloading the instruction.
id id_t Identification of the offloaded instruction.

An issue request transaction is defined as the combination of all issue_req signals during which issue_valid is
1, and the id and hartid remain unchanged. A CPU is allowed to retract its issue request transaction before it is
accepted with issue_ready = 1 and it can do so in the following ways:

• Set issue_valid = 0.

• Keep issue_valid = 1, but change the id or hartid signal (and if desired change the other signals in
issue_req).

The instr, hartid, and id signals are valid when issue_valid is 1. The instr signal remains stable during an
issue request transaction.

18 Chapter 5. eXtension Interface

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

Table 5.8 describes the x_issue_resp_t type.

Table 5.8: Issue response type

Signal Type Description
accept logic Is the offloaded instruction (id and hartid) accepted (1) by the co-

processor or rejected (0)?
writeback writeregflags_t Will the coprocessor perform a write-back in the CPU to rd? Write-

back to x0 or the x0, x1 pair is allowed by the coprocessor, but will
be ignored by the CPU. Write-back to a register pair is only allowed
if X_DUALWRITE = 1 and instruction bits [11:7] are even.

register_read readregflags_t Will the coprocessor perform require specific registers to be read?
A coprocessor may only request an odd register of a pair, if it also
requests the even register of a pair.

The CPU shall attempt to offload instructions via the issue interface for the following two main scenarios:

• The instruction is originally non-compressed and it is not recognized as a valid instruction by the CPU’s non-
compressed instruction decoder.

• The instruction is originally compressed and the coprocessor accepted the compressed instruction and provided
a 32-bit uncompressed instruction. In this case the 32-bit uncompressed instruction will be attempted for offload
even if it matches in the CPU’s non-compressed instruction decoder.

Apart from the above two main scenarios a CPU may also attempt to offload (compressed/uncompressed) instructions
that it does recognize as legal instructions itself. In case that both the CPU and the coprocessor accept the same
instruction as being valid, the instruction will cause an illegal instruction fault upon execution.

In all cases, the CPU must decode the instruction. The CPU shall cause an illegal instruction fault when attempting to
execute (commit) an instruction that:

• is considered to be valid by the CPU and accepted by the coprocessor (accept = 1).

• is considered neither to be valid by the CPU nor accepted by the coprocessor (accept = 0).

A coprocessor can delay accept accepting an instruction via issue_ready in the presence of structural hazards that
would prevent execution. A coprocessor can (only) accept an offloaded instruction when it can handle the instruction
(based on decoding instr).

A transaction is considered offloaded/accepted on the positive edge of clk when issue_valid, issue_ready are
asserted and accept is 1. A transaction is considered not offloaded/rejected on the positive edge of clk when
issue_valid and issue_ready are asserted while accept is 0.

The signals in issue_resp are valid when issue_valid and issue_ready are both 1. There are no stability re-
quirements.

5.5.7 Register interface

Table 5.9 describes the register interface signals.

5.5. Interfaces 19

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

Table 5.9: Register interface signals

Signal Type Direc-
tion
(CPU)

Description

register_valid logic output Register request valid. Indicates that CPU provides reg-
ister contents related to an instruction.

register_ready logic input Register request ready. The transaction signaled via
register_req is accepted when register_valid and
register_ready are both 1.

register x_register_t output Register packet.

Table 5.10 describes the x_register_t type.

Table 5.10: Register type

Signal Type Description
hartid hartid_t Identification of the hart offloading the instruction.
id id_t Identification of the offloaded instruction.
rs[X_NUM_RS-1:0] logic

[X_RFR_WIDTH-
1:0]

Register file source operands for the offloaded instruction.

rs_valid readregflags_t Validity of the register file source operand(s). If register pairs are
supported, the validity is signaled for each register within the pair
individually.

There are two main scenarios, in how the register interface will be used. They are selected by
X_ISSUE_REGISTER_SPLIT:

1. X_ISSUE_REGISTER_SPLIT = 0: A register transaction can be started in the same clock cycle as the issue
transaction (issue_valid = register_valid, issue_ready = register_ready, issue_req.hartid
= register.hartid and issue_req.id = register.id). In this case, the CPU will speculatively pro-
vide all possible source registers via register.rs when they become available (signalled via the respective
rs_valid signals). The coprocessor will delay accepting the instruction until all necessary registers are pro-
vided, and only then assert issue_ready and register_ready. The rs_valid bits are not required to be
stable during the transaction. Each bit can transition from 0 to 1, but is not allowed to transition back to 0 during
a transaction. A coprocessor is not expected to wait for all rs_valid bits to be 1, but only for those registers
it intends to read. The rs signals are only required to be stable during the part of a transaction in which these
signals are considered to be valid.

2. X_ISSUE_REGISTER_SPLIT = 1: For a CPU which splits the issue and register interface into subsequent pipeline
stages (e.g. because it has a dedicated read registers (RR) stage), the registers will be provided after the issue
transaction completed. The CPU initiates the register transaction once all registers are available. If the copro-
cessor is able to accept multiple issue transactions before receiving the registers, the register transaction can
occur in a different order. This allows the CPU to reorder instructions based on the availability of operands. The
coprocessor is always expected to be ready to retrieve its operands via the register interface after accepting the
issue of an instruction. Therefore, register_ready is tied to 1. The register_valid signal will be 1 for one
cycle, and rs_valid is guaranteed to be equal to the corresponding issue_resp.register_read. Thus, a
coprocessor can ignore rs_valid in this case and a CPU may chose to not implement the signal.

In both scenarios, the following applies:

A register transaction is defined as the combination of all register signals during which register_valid is 1, and
the id and hartid remain unchanged. A CPU is allowed to retract its register transaction before it is accepted with

20 Chapter 5. eXtension Interface

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

register_ready = 1 and it can do so in the following ways:

• Set register_valid = 0.

• Keep register_valid = 1, but change the id or hartid signal (and if desired change the other signals in
register).

The hartid, id, and rs_valid signals are valid when register_valid is 1. The rs signal is only considered valid
when register_valid is 1 and the corresponding bit in rs_valid is 1 as well.

The rs[X_NUM_RS-1:0] signals provide the register file operand(s) to the coprocessor. In case that XLEN =
X_RFR_WIDTH, then the regular register file operands corresponding to rs1, rs2 or rs3 are provided. In case XLEN
!= X_RFR_WIDTH (i.e. XLEN = 32 and X_RFR_WIDTH = 64), then the rs[X_NUM_RS-1:0] signals provide two 32-bit
register file operands per index (corresponding to even/odd register pairs) with the even register specified in rs1, rs2
or rs3. The register file operand for the even register file index is provided in the lower 32 bits; the register file operand
for the odd register file index is provided in the upper 32 bits. When reading from the x0, x1 pair, then a value of 0
is returned for the entire operand. The X_DUALREAD parameter defines whether dual read is supported and for which
register file sources it is supported.

5.5.8 Commit interface

Table 5.11 describes the commit interface signals.

Table 5.11: Commit interface signals

Signal Type Direc-
tion
(CPU)

Description

commit_valid logic output Commit request valid. Indicates that CPU has valid
commit or kill information for an offloaded instruction.
There is no corresponding ready signal (it is implicit
and assumed 1). The coprocessor shall be ready to ob-
serve the commit_valid and commit_kill signals at
any time coincident or after an issue transaction initia-
tion.

commit x_commit_t output Commit packet.

Table 5.12 describes the x_commit_t type.

5.5. Interfaces 21

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

Table 5.12: Commit packet type

Signal Type Description
hartid hartid_t Identification of the hart offloading the instruction.
id id_t Identification of the offloaded instruction. Valid when

commit_valid is 1.
commit_kill logic If commit_valid is 1 and commit_kill is 0, then the CPU guaran-

tees that the offloaded instruction (id) and any older (i.e. preceding)
instructions are no longer speculative, will not get killed (e.g. due to
misspeculation or an exception in a preceding instruction), and are
allowed to be committed. If commit_valid is 1 and commit_kill
is 1, then the offloaded instruction (id) and any newer (i.e. succeed-
ing) instructions shall be killed in the coprocessor and the copro-
cessor must guarantee that the related instructions do/did not change
architectural state. The taken action only applies to instructions of-
floaded with the specified hartid.

The commit_valid signal will be 1 exactly one clk cycle. It is not required that a commit transaction is performed for
each offloaded instruction individually. Instructions can be signalled to be non-speculative or to be killed in batch. E.g.
signalling the oldest instruction to be killed is equivalent to requesting a flush of the coprocessor. The first instruction
to be considered not-to-be-killed after a commit transaction with commit_kill as 1, is at earliest an instruction with
successful issue transaction starting at least one clock cycle later.

Note: If an instruction is marked in the coprocessor as killed or committed, the coprocessor shall ignore any subsequent
commit transaction related to that instruction.

Note: A coprocessor must be tolerant to any possible commit.id, whether this represents and in-flight instruction or
not. In this case, the coprocessor may still need to process the request by considering the relevant instructions (either
preceding or succeeding) as no longer speculative or to be killed. This behavior supports scenarios in which more than
one coprocessor is connected to an issue interface.

A CPU is required to mark every instruction that has completed the issue transaction as either killed or non-speculative.
This includes accepted (issue_resp.accept = 1) and rejected instructions (issue_resp.accept = 0).

A coprocessor does not have to wait for commit_valid to become asserted. It can speculate that an offloaded accepted
instruction will not get killed, but in case this speculation turns out to be wrong because the instruction actually did get
killed, then the coprocessor must undo any of its internal architectural state changes that are due to the killed instruction.

A coprocessor is not allowed to perform speculative result transactions and shall therefore never initiate a result trans-
action for instructions that have not yet received a commit transaction with commit_kill = 0. The earliest point at
which a coprocessor can initiate a result handshake for an instruction is therefore the cycle in which commit_valid =
1 and commit_kill = 0 for that instruction.

The signals in commit are valid when commit_valid is 1.

22 Chapter 5. eXtension Interface

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

5.5.9 Memory (request/response) interface

The memory (request/response) interface is not included in this version of the specification

5.5.10 Memory result interface

The memory (request/response) interface is not included in this version of the specification

5.5.11 Result interface

Table 5.13 describes the result interface signals.

Table 5.13: Result interface signals

Signal Type Direc-
tion
(CPU)

Description

result_valid logic input Result request valid. Indicates that the coprocessor has
a valid result (write data or exception) for an offloaded
instruction.

result_ready logic output Result request ready. The result signaled via result
is accepted by the CPU when result_valid and
result_ready are both 1.

result x_result_t input Result packet.

The coprocessor shall provide results to the CPU via the result interface. A coprocessor is allowed to provide results
to the CPU in an out of order fashion. A coprocessor is only allowed to provide a result for an instruction once the
CPU has indicated (via the commit interface) that this instruction is allowed to be committed. Each accepted offloaded
(committed and not killed) instruction shall have exactly one result transaction (even if no data needs to be written back
to the CPU’s register file). No result transaction shall be performed for instructions which have not been accepted for
offload or for instructions that have been killed.

Table 5.14 describes the x_result_t type.

Table 5.14: Result packet type

Signal Type Description
hartid hartid_t Identification of the hart offloading the instruction.
id id_t Identification of the offloaded instruction.
data logic

[X_RFW_WIDTH-
1:0]

Register file write data value(s).

rd logic [4:0] Register file destination address(es).
we writeregflags_t Register file write enable(s).

A result transaction starts in the cycle that result_valid = 1 and ends in the cycle that both result_valid = 1 and
result_ready = 1. The signals in result are valid when result_valid is 1. The signals in result shall remain
stable during a result transaction.

we is 2 bits wide when XLEN = 32 and X_RFW_WIDTH = 64, and 1 bit wide otherwise. The CPU shall ignore write-back
to x0. When a dual write-back is performed to the x0, x1 pair, the entire write shall be ignored, i.e. neither x0 nor x1

5.5. Interfaces 23

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

shall be written by the CPU. For an instruction instance, the we signal must be the same as issue_resp.write-back.
The CPU is not required to check that these signals match.

Note: issue_resp.write-back and result.we carry the same information. Nevertheless, result.we is provided
to simplify the CPU logic. Without this signal, the CPU would have to look this information up based on the instruction
id.

5.6 Interface dependencies

The following rules apply to the relative ordering of the interface handshakes:

• The compressed interface transactions are in program order (possibly a subset) and the CPU will at least attempt
to offload compressed instructions that it does not consider to be valid itself.

• The issue interface transactions are in program order (possibly a subset) and the CPU will at least attempt to
offload instructions that it does not consider to be valid itself.

• Every issue interface transaction has an associated register interface transaction, if the instruction is not killed
before the register transaction. It is not required for register transactions to be in the same order as the issue
transactions.

• A register interface transaction cannot be initiated before the corresponding issue interface handshake is initiated.

– If X_ISSUE_REGISTER_SPLIT = 0, it must be initiated a the same time.

– If X_ISSUE_REGISTER_SPLIT = 1, it can only be initiated after the corresponding issue interface hand-
shake is completed.

• Every issue interface transaction (whether accepted or not) must be marked as non-speculative or to be killed by
a commit interface transaction.

• If an offloaded instruction is accepted and allowed to commit, then for each such instruction one result transaction
must occur via the result interface (even if no write-back needs to happen to the CPU’s register file). The
transaction ordering on the result interface does not have to correspond to the transaction ordering on the issue
interface.

• A commit interface handshake cannot be initiated before the corresponding issue interface handshake is initiated.
It is allowed to be initiated at the same time or later.

Note: There is no required ordering between commit and register in case of X_ISSUE_REGISTER_SPLIT = 1. In this
case, implementations must be tolerant to commit before register and register before commit transaction.

• A result interface handshake cannot be initiated before the corresponding register interface handshake is initiated.
It is allowed to be initiated at the same time or later.

• A result interface handshake cannot be initiated before the corresponding instruction has been marked as non-
speculative by a commit transaction. It is allowed to be initiated at the same time or later.

• A result interface handshake cannot be (or have been) initiated for killed instructions.

24 Chapter 5. eXtension Interface

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

5.7 Handshake rules

The following handshake pairs exist on the eXtension interface:

• compressed_valid with compressed_ready.

• issue_valid with issue_ready.

• register_valid with register_ready.

• commit_valid with implicit always ready signal.

• result_valid with result_ready.

The only rule related to *_valid and *_ready signals is that:

• A transaction is considered accepted on the positive clk edge when both valid and (implicit or explicit) ready
are 1.

Note:

• The *_valid signals are allowed to be retracted by a CPU (e.g. in case that the related instruction is killed in
the CPU’s pipeline before the corresponding *_ready is signaled).

• It is defined per interface, if and how the CPU can start a new transaction while a transaction is ongoing (*_valid
= 1). In most interfaces, it can be started by changing the hartid and/or id signal and keeping the *_valid
signal asserted (thereby possibly terminating a previous transaction before it completed).

• The *_valid signals are not allowed to be retracted by a coprocessor (e.g. once result_valid is asserted
it must remain asserted until the handshake with result_ready has been performed). A new transaction can
therefore not be started by a coprocessor by just changing the hartid and/or id signal and keeping the valid
signal asserted if no *_ready has been received yet for the original transaction. The cycle after receiving the
*_ready signal, a next (back-to-back) transaction is allowed to be started by just keeping the *_valid signal
high and changing the hartid and/or id to that of the next transaction.

• The *_ready signals are allowed to be 1 when the corresponding *_valid signal is 0.

• The *_valid signals are allowed to transition from 0 to 1 independent of the *_ready signals’ states.

5.8 Signal dependencies

A CPU shall not have combinatorial paths from its eXtension interface input signals to its eXtension interface output
signals, except for the following allowed paths:

• paths from result_valid, result to register_valid, rs, rs_valid.

Note: The above implies that the non-compressed instruction instr[31:0] received via the compressed interface is
not allowed to combinatorially feed into the issue interface’s instr[31:0] instruction.

A coprocessor is allowed (and expected) to have combinatorial paths from its eXtension interface input signals to its
eXtension interface output signals. In order to prevent combinatorial loops the following combinatorial paths are not
allowed in a coprocessor:

• paths from register_valid, rs, rs_valid to result_valid, result.

5.7. Handshake rules 25

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

Note: The above implies that a coprocessor has a pipeline stage separating the register file operands from its result
generating circuit (similar to the separation between decode stage and execute stage found in many CPUs).

Note: As a CPU is allowed to retract transactions on its compressed, issue, and register interfaces, the
compressed_ready, issue_ready, and register_ready signals will have to depend on signals received from the
CPU in a combinatorial manner (otherwise these ready signals might be signaled for the wrong hartid and id).

5.9 System level deadlock avoidance

In order to avoid system level deadlock both the CPU and the coprocessor shall obey the following rules:

• The valid signal of a transaction shall not be dependent on the corresponding ready signal.

• The only allowed dependencies between interfaces for transactions with the same hartid and id are:

– Issue may depend on Compressed (e.g. issue_req.instr depends on compressed_resp.instr)

– Register may depend on Issue (e.g. register.rs may depend on issue_resp.register_read) and
Compressed

– Commit may depend on Issue and Compressed

– Result may depend on Commit, Register (e.g. result.data may depend on register.rs), Issue (e.g.
result.we depends on issue_resp.writeback), and Compressed

Note: In case of X_ISSUE_REGISTER_SPLIT = 0, the issue and register interfaces are coupled. Because commit
depends on issue, it is implied that register also cannot depend on commit.

• Transactions with an earlier issued hartid and id shall not depend on transactions with a later issued hartid
and id (e.g. a coprocessor is not allowed to delay generating result_valid = 1 because it first wants to see
commit_valid = 1 for a newer instruction).

Note: The use of the words depend and dependent relate to logical relationships, which is broader than combinatorial
relationships.

26 Chapter 5. eXtension Interface

CHAPTER

SIX

APPENDIX

This appendix contains several useful, non-normative pieces of information that help implementing the eXtension
Interface.

6.1 SystemVerilog example

In the src folder of this project, the file https://github.com/openhwgroup/core-v-xif/blob/main/src/core_v_xif.sv con-
tains a non-normative realization of this specification based on SystemVerilog interfaces. Of course the use of Sys-
temVerilog (interfaces) is not mandatory.

6.2 Coprocessor recommendations

A coprocessor is recommended (but not required) to follow the following suggestions to maximize its re-use potential:

• Avoid using opcodes that are reserved or already used by RISC-V International unless for supporting a standard
RISC-V extension.

• Make it easy to change opcode assignments such that a coprocessor can easily be updated if it conflicts with
another coprocessor.

• Clearly document the supported and required parameter values.

6.3 Recommendations for implementing multiple coprocessors on a
shared interface

It is possible to implement multiple coprocessors, which connect to a single CPU. There is no required implementation
to do this, but the specification is written with the intention of enabling this scenario. This section provides details per
interface on a possible path of integration.

In general, the combination of multiple coprocessors will require de-multiplexing of their signals. The de-multiplexing
logic can be reduced to a simple OR combination, if the output signals of the coprocessors not mapped to the instruction
are 0. This applies to the compressed interface, the issue interface, and the result interface.

• Compressed interface

The compressed_valid and compressed_req signals can be broadcasted to all coprocessors. Each coproces-
sor drives its compressed_ready and compressed_resp signals. It is recommended that coprocessors provide
the response within the same cycle. In this case, both will be driving compressed_ready the same way. The
compressed_resp signals need to be de-multiplexed based on the compressed_resp.accept signals. More
than one coprocessor accepting an instruction must be prevented by design.

27

https://github.com/openhwgroup/core-v-xif/blob/main/src/core_v_xif.sv

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

• Issue interface

The issue_valid and issue_req signals can be broadcasted to all coprocessors. Each coprocessor drives its
issue_ready and issue_resp signals. It is recommended that coprocessors provide the response within the
same cycle. In this case, both will be driving issue_ready the same way. The issue_resp signals need to be
de-multiplexed based on the issue_resp.accept signals. More than one coprocessor accepting an instruction
must be prevented by design.

• Register interface

The register_valid and register_req signals can be broadcasted to all coprocessors. Each coprocessor
drives its register_ready signal. The transition of a coprocessors register_ready signal to 1 should only
occur when it is clear that the next transaction is targeting an instruction accepted by it. This can be the case, if
there is a clear sequence from issue to register interface, or when register_valid = 1 and id is matching an
instruction accepted by the coprocessor. It is possible to provide an OR combination of the register_ready
signals as a combined signal to the CPU.

• Commit interface

The commit transaction is unidirectional from the CPU to the coprocessor. All signals will be broadcasted to all
coprocessors. The definition of the commit interface requires the coprocessors to be functional if faced with id
values it did not accept.

• Result interface

The result_ready signal can be broadcasted to all coprocessors. Each coprocessor drives its result_valid
signal. If all instructions in all coprocessors complete execution in a fixed number of CPU clock cycles after their
register interface transaction completed, and writeback is never stalled (i.e. result_ready is 1 at that time), it
is possible to de-multiplex the result based on the result_valid signals. If this cannot be guaranteed, e.g.
because a coprocessor implements long executing instructions, out-of-order completion etc., it is necessary to
arbitrate and multiplex the result transactions requested by each coprocessor.

6.4 Timing recommendations

The integration of the eXtension interface will vary from CPU to CPU, and thus require its own set of timing constraints.

CV32E40X eXtension timing budget shows the recommended timing budgets for the coprocessor and (optional) inter-
connect for the case in which a coprocessor is paired with the CV32E40X (https://github.com/openhwgroup/cv32e40x)
processor. As is shown in that timing budget, the coprocessor only receives a small part of the timing budget on the
paths through xif_issue_if.issue_req.rs*. This enables the coprocessor to source its operands directly from
the CV32E40X register file bypass network, thereby preventing stall cycles in case an offloaded instruction depends
on the result of a preceding non-offloaded instruction. This implies that, if a coprocessor is intended for pairing with
the CV32E40X, it will be beneficial timing wise if the coprocessor does not directly operate on the rs* source inputs,
but registers them instead. To maximize utilization of a coprocessor with various CPUs, such registers could be made
optional via a parameter.

28 Chapter 6. Appendix

https://cv32e40x-user-manual.readthedocs.io/en/stable/x_ext.html#timing
https://github.com/openhwgroup/cv32e40x

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

6.5 Verification

A UVM agent for the interface was developed for the verification of CVA6. It can be accessed under
https://github.com/openhwgroup/core-v-verif/tree/master/lib/uvm_agents/uvma_cvxif.

6.5. Verification 29

https://github.com/openhwgroup/core-v-verif/tree/99b260b036b3c220ab3d405d521f5c710e587e89/lib/uvm_agents/uvma_cvxif

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

30 Chapter 6. Appendix

BIBLIOGRAPHY

[RISC-V-UNPRIV] The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 20191213,
Editors Andrew Waterman and Krste Asanovíc, RISC-V Foundation, December 2019.

[RISC-V-PRIV] The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version
20211203, Editors Andrew Waterman, Krste Asanovíc, and John Hauser, RISC-V International, De-
cember 2021.

Copyright © 2021-2024 OpenHW Group

31

OpenHW Group Specification: Core-V eXtension interface (CV-X-IF) - Development, Release
v1.0.0-rc.3-dev.1

32 Bibliography

INDEX

A
ALU, 8

C
clk, 8
CPU, 8
CSR, 8

E
ECS, 9

G
GPR, 8

I
ISA, 8

M
MMU, 8

N
NMI, 8

P
PMA, 8
PMP, 8

R
RTL, 9

U
UVM, 8

33

	Acknowledgements
	Contributors
	Changelog
	v1.0.0-rc.2: Second Release Candidate (post public review)
	v1.0.0-rc.1: First release candidate
	v0.2.0: Reworked specification
	v0.1.0: Initial draft

	Introduction
	History
	License
	Standards Compliance
	Glossary

	eXtension Interface
	CV-X-IF
	Parameters
	Major features
	Operating principle
	Interfaces
	Clocking and Signal Stability
	Identification
	Multiple coprocessors
	Multiple Harts
	Compressed interface
	Issue interface
	Register interface
	Commit interface
	Memory (request/response) interface
	Memory result interface
	Result interface

	Interface dependencies
	Handshake rules
	Signal dependencies
	System level deadlock avoidance

	Appendix
	SystemVerilog example
	Coprocessor recommendations
	Recommendations for implementing multiple coprocessors on a shared interface
	Timing recommendations
	Verification

	Bibliography
	Index

