CORE-V Instruction Set Custom Extensions
CV32E40P supports the following CORE-V ISA X Custom Extensions, which can be enabled by setting COREV_PULP
== 1.
Post-Increment load and stores, see Post-Increment Load & Store Instructions and Register-Register Load & Store Instructions, invoked in the tool chain with
-march=rv32i*_xcvmem
.Hardware Loop extension, see Hardware Loops, invoked in the tool chain with
-march=rv32i*_xcvhwlp
.ALU extensions, see ALU, which are divided into three sub-extensions:
bit manipulation instructions, invoked in the tool chain with
-march=rv32i*_xcvbitmanip
;miscellaneous ALU instructions, invoked in the tool chain with
-march=rv32i*_xcvalu
; andimmediate branch instructions, invoked in the tool chain with
-march=rv32i*_xcvbi
.Multiply-Accumulate extensions, see Multiply-Accumulate, invoked in the tool chain with
-march=rv32i*_xcvmac
.Single Instruction Multiple Data (aka SIMD) extensions, see SIMD, invoked in the tool chain with
-march=rv32i*_xcvsimd
.
Additionally the event load instruction (cv.elw) is supported by setting COREV_CLUSTER
== 1, see Event Load Instruction.
This is a separate ISA extension, invoked in the tool chain with -march=rv32i*_xcvelw
.
If not specified, all the operands are signed and immediate values are sign-extended.
To use such instructions, you need to compile your SW with the CORE-V GCC or Clang/LLVM compiler.
Note
Clang/LLVM assembler will be supported by 30 June 2023, with builtin function support by 31 December 2023.
Pseudo-instructions
This specification also includes documentation of some CORE-V pseudo-instructions. Pseudo-instructions are implemented in the assembler that are similar to a base instruction but provides control information to the assembler as opposed to generating its base instruction. This makes it easier to program as we gain clarity on the intention of the programmer.
16-Bit x 16-Bit Multiplication pseudo-instructions, see 16-Bit x 16-Bit Multiplication pseudo-instructions.
Post-Increment Load & Store Instructions and Register-Register Load & Store Instructions
Post-Increment load and store instructions perform a load, or a store, respectively, while at the same time incrementing the address that was used for the memory access. Since it is a post-incrementing scheme, the base address is used for the access and the modified address is written back to the register-file. There are versions of those instructions that use immediates and those that use registers as offsets. The base address always comes from a register.
The custom post-increment load & store instructions and register-register
load & store instructions are only supported if COREV_PULP
== 1.
Load operations
Note
When same register is used as address and destination (rD == rs1) for post-incremented loads (rs1!), loaded data has highest priority over incremented address when writing to this same register.
Mnemonic |
Description |
---|---|
Register-Immediate Loads with Post-Increment |
|
cv.lb rD, Imm(rs1!) |
rD = Sext(Mem8(rs1)) rs1 += Sext(Imm[11:0]) |
cv.lbu rD, Imm(rs1!) |
rD = Zext(Mem8(rs1)) rs1 += Sext(Imm[11:0]) |
cv.lh rD, Imm(rs1!) |
rD = Sext(Mem16(rs1)) rs1 += Sext(Imm[11:0]) |
cv.lhu rD, Imm(rs1!) |
rD = Zext(Mem16(rs1)) rs1 += Sext(Imm[11:0]) |
cv.lw rD, Imm(rs1!) |
rD = Mem32(rs1) rs1 += Sext(Imm[11:0]) |
Register-Register Loads with Post-Increment |
|
cv.lb rD, rs2(rs1!) |
rD = Sext(Mem8(rs1)) rs1 += rs2 |
cv.lbu rD, rs2(rs1!) |
rD = Zext(Mem8(rs1)) rs1 += rs2 |
cv.lh rD, rs2(rs1!) |
rD = Sext(Mem16(rs1)) rs1 += rs2 |
cv.lhu rD, rs2(rs1!) |
rD = Zext(Mem16(rs1)) rs1 += rs2 |
cv.lw rD, rs2(rs1!) |
rD = Mem32(rs1) rs1 += rs2 |
Register-Register Loads |
|
cv.lb rD, rs2(rs1) |
rD = Sext(Mem8(rs1 + rs2)) |
cv.lbu rD, rs2(rs1) |
rD = Zext(Mem8(rs1 + rs2)) |
cv.lh rD, rs2(rs1) |
rD = Sext(Mem16(rs1 + rs2)) |
cv.lhu rD, rs2(rs1) |
rD = Zext(Mem16(rs1 + rs2)) |
cv.lw rD, rs2(rs1) |
rD = Mem32(rs1 + rs2) |
Store operations
Mnemonic |
Description |
---|---|
Register-Immediate Stores with Post-Increment |
|
cv.sb rs2, Imm(rs1!) |
Mem8(rs1) = rs2 rs1 += Sext(Imm[11:0]) |
cv.sh rs2, Imm(rs1!) |
Mem16(rs1) = rs2 rs1 += Sext(Imm[11:0]) |
cv.sw rs2, Imm(rs1!) |
Mem32(rs1) = rs2 rs1 += Sext(Imm[11:0]) |
Register-Register Stores with Post-Increment |
|
cv.sb rs2, rs3(rs1!) |
Mem8(rs1) = rs2 rs1 += rs3 |
cv.sh rs2, rs3(rs1!) |
Mem16(rs1) = rs2 rs1 += rs3 |
cv.sw rs2, rs3(rs1!) |
Mem32(rs1) = rs2 rs1 += rs3 |
Register-Register Stores |
|
cv.sb rs2, rs3(rs1) |
Mem8(rs1 + rs3) = rs2 |
cv.sh rs2 rs3(rs1) |
Mem16(rs1 + rs3) = rs2 |
cv.sw rs2, rs3(rs1) |
Mem32(rs1 + rs3) = rs2 |
Encoding
31 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|
imm[11:0] |
rs1 |
funct3 |
rD |
opcode |
Mnemonic |
offset |
base |
000 |
dest |
000 1011 |
cv.lb rD, Imm(rs1!) |
offset |
base |
100 |
dest |
000 1011 |
cv.lbu rD, Imm(rs1!) |
offset |
base |
001 |
dest |
000 1011 |
cv.lh rD, Imm(rs1!) |
offset |
base |
101 |
dest |
000 1011 |
cv.lhu rD, Imm(rs1!) |
offset |
base |
010 |
dest |
000 1011 |
cv.lw rD, Imm(rs1!) |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
rs2 |
rs1 |
funct3 |
rD |
opcode |
Mnemonic |
000 0000 |
offset |
base |
011 |
dest |
010 1011 |
cv.lb rD, rs2(rs1!) |
000 1000 |
offset |
base |
011 |
dest |
010 1011 |
cv.lbu rD, rs2(rs1!) |
000 0001 |
offset |
base |
011 |
dest |
010 1011 |
cv.lh rD, rs2(rs1!) |
000 1001 |
offset |
base |
011 |
dest |
010 1011 |
cv.lhu rD, rs2(rs1!) |
000 0010 |
offset |
base |
011 |
dest |
010 1011 |
cv.lw rD, rs2(rs1!) |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
rs2 |
rs1 |
funct3 |
rD |
opcode |
Mnemonic |
000 0100 |
offset |
base |
011 |
dest |
010 1011 |
cv.lb rD, rs2(rs1) |
000 1100 |
offset |
base |
011 |
dest |
010 1011 |
cv.lbu rD, rs2(rs1) |
000 0101 |
offset |
base |
011 |
dest |
010 1011 |
cv.lh rD, rs2(rs1) |
000 1101 |
offset |
base |
011 |
dest |
010 1011 |
cv.lhu rD, rs2(rs1) |
000 0110 |
offset |
base |
011 |
dest |
010 1011 |
cv.lw rD, rs2(rs1) |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
imm[11:5] |
rs2 |
rs1 |
funct3 |
imm[4:0] |
opcode |
Mnemonic |
offset[11:5] |
src |
base |
000 |
offset[4:0] |
010 1011 |
cv.sb rs2, Imm(rs1!) |
offset[11:5] |
src |
base |
001 |
offset[4:0] |
010 1011 |
cv.sh rs2, Imm(rs1!) |
offset[11:5] |
src |
base |
010 |
offset[4:0] |
010 1011 |
cv.sw rs2, Imm(rs1!) |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
rs2 |
rs1 |
funct3 |
rs3 |
opcode |
Mnemonic |
001 0000 |
src |
base |
011 |
offset |
010 1011 |
cv.sb rs2, rs3(rs1!) |
001 0001 |
src |
base |
011 |
offset |
010 1011 |
cv.sh rs2, rs3(rs1!) |
001 0010 |
src |
base |
011 |
offse t |
010 1011 |
cv.sw rs2, rs3(rs1!) |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
rs2 |
rs1 |
funct3 |
rs3 |
opcode |
Mnemonic |
001 0100 |
src |
base |
011 |
offset |
010 1011 |
cv.sb rs2, rs3(rs1) |
001 0101 |
src |
base |
011 |
offset |
010 1011 |
cv.sh rs2, rs3(rs1) |
001 0110 |
src |
base |
011 |
offset |
010 1011 |
cv.sw rs2, rs3(rs1) |
Event Load Instruction
The event load instruction cv.elw is only supported if the COREV_CLUSTER
parameter is set to 1.
The event load performs a load word and can cause the CV32E40P to enter a sleep state as explained
in PULP Cluster Extension.
Event Load operation
Mnemonic |
Description |
---|---|
Event Load |
|
cv.elw rD, Imm(rs1) |
rD = Mem32(Sext(Imm) + rs1) |
Encoding
31 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|
imm[11:0] |
rs1 |
funct3 |
rD |
opcode |
Mnemonic |
offset |
base |
011 |
dest |
000 1011 |
cv.elw rD, Imm(rs1) |
Hardware Loops
The loop has to be setup before entering the loop body. For this purpose, there are two methods, either the long commands that separately set start- and end-addresses of the loop and the number of iterations, or the short command that does all of this in a single instruction. The short command has a limited range for the number of instructions contained in the loop and the loop must start in the next instruction after the setup instruction.
Due to start/end addresses constraint, the 2 LSBs are hardwired to 0. When using cv.start and cv.end instructions, the 2 LSBs of rs1 are ignored.
Hardware loop instructions and related CSRs are only supported if COREV_PULP
== 1.
Details about the hardware loop constraints are provided in CORE-V Hardware Loop feature.
In the following tables, the hardware loop instructions are reported. In assembly, L is referred by 0 or 1.
Hardware Loops operations
Mnemonic |
Description |
---|---|
cv.starti L, uimmL |
lpstart[L] = PC + (uimmL << 2) |
cv.start L, rs1 |
lpstart[L] = rs1 |
cv.endi L, uimmL |
lpend[L] = PC + (uimmL << 2) |
cv.end L, rs1 |
lpend[L] = rs1 |
cv.counti L, uimmL |
lpcount[L] = uimmL |
cv.count L, rs1 |
lpcount[L] = rs1 |
Mnemonic |
Description |
---|---|
cv.setupi L, uimmL, uimmS |
lpstart[L] = PC + 4 lpend[L] = PC + (uimmS << 2) lpcount[L] = uimmL |
cv.setup L, rs1, uimmL |
lpstart[L] = PC + 4 lpend[L] = PC + (uimmL << 2) lpcount[L] = rs1 |
Encoding
31 : 20 |
19 : 15 |
14 : 12 |
11 : 8 |
7 |
6 : 0 |
|
---|---|---|---|---|---|---|
uimmL[11:0] |
rs1 |
funct3 |
funct4 |
L |
opcode |
Mnemonic |
uimmL[11:0] |
00000 |
100 |
0000 |
L |
010 1011 |
cv.starti L, uimmL |
0000 0000 0000 |
src1 |
100 |
0001 |
L |
010 1011 |
cv.start L, rs1 |
uimmL[11:0] |
00000 |
100 |
0010 |
L |
010 1011 |
cv.endi L, uimmL |
0000 0000 0000 |
src1 |
100 |
0011 |
L |
010 1011 |
cv.end L, rs1 |
uimmL[11:0] |
00000 |
100 |
0100 |
L |
010 1011 |
cv.counti L, uimmL |
0000 0000 0000 |
src1 |
100 |
0101 |
L |
010 1011 |
cv.count L, rs1 |
uimmL[11:0] |
uimmS[4:0] |
100 |
0110 |
L |
010 1011 |
cv.setupi L, uimmL, uimmS |
uimmL[11:0] |
src1 |
100 |
0111 |
L |
010 1011 |
cv.setup L, rs1, uimmL |
ALU
CV32E40P supports advanced ALU operations that allow to perform multiple instructions that are specified in the base instruction set in one single instruction and thus increases efficiency of the core. For example, those instructions include zero-/sign-extension instructions for 8-bit and 16-bit operands, simple bit manipulation/counting instructions and min/max/avg instructions. The ALU does also support saturating, clipping and normalizing instructions which make fixed-point arithmetic more efficient.
The custom ALU extensions are only supported if COREV_PULP
== 1.
The custom extensions to the ALU are split into several subgroups that belong together.
Bit manipulation instructions are useful to work on single bits or groups of bits within a word, see Bit Manipulation operations.
General ALU instructions try to fuse common used sequences into a single instruction and thus increase the performance of small kernels that use those sequence, see General ALU operations.
Immediate branching instructions are useful to compare a register with an immediate value before taking or not a branch, see see Immediate Branching operations.
Extract, Insert, Clear and Set instructions have the following meaning:
Extract Is3+1 or rs2[9:5]+1 bits from position Is2 or rs2[4:0] [and sign extend it]
Insert Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]
Clear Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]
Set Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]
Bit Reverse Instruction
This section will describe the cv.bitrev instruction from a bit manipulation perspective without describing it’s application as part of an FFT. The bit reverse instruction will reverse bits in groupings of 1, 2 or 3 bits. The number of grouped bits is described by Is3 as follows:
0 - reverse single bits
1 - reverse groups of 2 bits
2 - reverse groups of 3 bits
The number of bits that are reversed can be controlled by Is2. This will specify the number of bits that will be removed by a left shift prior to the reverse operation resulting in the 32-Is2 least significant bits of the input value being reversed and the Is2 most significant bits of the input value being thrown out.
What follows is a few examples.
cv.bitrev x18, x20, 0, 4 (groups of 1 bit; radix-2)
in: 0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out: 0x0CC9A526 00001100110010011010010100100110
Swap pattern:
A B C D E F G H . . . . . . . . . . . . . . . . . . . . . . . .
0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . H G F E D C B A
0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0
In this example the input value is first shifted by 4 (Is2). Each individual bit is reversed. For example, bits 31 and 0 are swapped, 30 and 1, etc.
cv.bitrev x18, x20, 1, 4 (groups of 2 bits; radix-4)
in: 0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out: 0x0CC65A19 00001100110001100101101000011001
Swap pattern:
A B C D E F G H I J K L M N O P
01 10 01 00 10 10 01 01 10 01 00 11 00 11 00 00
P O N M L K J I H G F E D C B A
00 00 11 00 11 00 01 10 01 01 10 10 00 01 10 01
In this example the input value is first shifted by 4 (Is2). Each group of two bits are reversed. For example, bits 31 and 30 are swapped with 1 and 0 (retaining their position relative to each other), bits 29 and 28 are swapped with 3 and 2, etc.
cv.bitrev x18, x20, 2, 4 (groups of 3 bits; radix-8)
in: 0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out: 0x216B244B 00100001011010110010010001001011
Swap pattern:
A B C D E F G H I J
011 001 001 010 010 110 010 011 001 100 00
J I H G F E D C B A
00 100 001 011 010 110 010 010 001 001 011
In this last example the input value is first shifted by 4 (Is2). Each group of three bits are reversed. For example, bits 31, 30 and 29 are swapped with 4, 3 and 2 (retaining their position relative to each other), bits 28, 27 and 26 are swapped with 7, 6 and 5, etc. Notice in this example that bits 0 and 1 are lost and the result is shifted right by two with bits 31 and 30 being tied to zero. Also notice that when J (100) is swapped with A (011), the four most significant bits are no longer zero as in the other cases. This may not be desirable if the intention is to pack a specific number of grouped bits aligned to the least significant bit and zero extended into the result. In this case care should be taken to set Is2 appropriately.
Bit Manipulation operations
Mnemonic |
Description |
---|---|
cv.extract rD, rs1, Is3, Is2 |
rD = Sext(rs1[min(Is3+Is2,31):Is2]) Note: Sign extension is done over the MSB of the extracted part. |
cv.extractu rD, rs1, Is3, Is2 |
rD = Zext(rs1[min(Is3+Is2,31):Is2]) |
cv.extractr rD, rs1, rs2 |
rD = Sext(rs1[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]]) Note: Sign extension is done over the MSB of the extracted part. |
cv.extractur rD, rs1, rs2 |
rD = Zext(rs1[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]]) |
cv.insert rD, rs1, Is3, Is2 |
rD[min(Is3+Is2,31):Is2] = rs1[Is3-(max(Is3+Is2,31)-31):0] The rest of the bits of rD are untouched and keep their previous value. Is3 + Is2 must be < 32. |
cv.insertr rD, rs1, rs2 |
rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] = rs1[rs2[9:5]-(max(rs2[9:5]+rs2[4:0],31)-31):0] The rest of the bits of rD are untouched and keep their previous value. Is3 + Is2 must be < 32. |
cv.bclr rD, rs1, Is3, Is2 |
rD[min(Is3+Is2,31):Is2] bits set to 0 The rest of the bits of rD are passed through from rs1 and are not modified. |
cv.bclrr rD, rs1, rs2 |
rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] bits set to 0 The rest of the bits of rD are passed through from rs1 and are not modified. |
cv.bset rD, rs1, Is3, Is2 |
rD[min(Is3+Is2,31):Is2] bits set to 1 The rest of the bits of rD are passed through from rs1 and are not modified. |
cv.bsetr rD, rs1, rs2 |
rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] bits set to 1 The rest of the bits of rD are passed through from rs1 and are not modified. |
cv.ff1 rD, rs1 |
rD = bit position of the first bit set in rs1, starting from LSB. If bit 0 is set, rD will be 0. If only bit 31 is set, rD will be 31. If rs1 is 0, rD will be 32. |
cv.fl1 rD, rs1 |
rD = bit position of the last bit set in rs1, starting from MSB. If bit 31 is set, rD will be 31. If only bit 0 is set, rD will be 0. If rs1 is 0, rD will be 32. |
cv.clb rD, rs1 |
rD = count leading bits of rs1 Number of consecutive 1’s or 0’s starting from MSB. If rs1 is 0, rD will be 0. If rs1 is different than 0, returns (number - 1). |
cv.cnt rD, rs1 |
rD = Population count of rs1 Number of bits set in rs1. |
cv.ror rD, rs1, rs2 |
rD = RotateRight(rs1, rs2) |
cv.bitrev rD, rs1, Is3, Is2 |
Given an input rs1 it returns a bit reversed representation assuming FFT on 2^Is2 points in Radix 2^(Is3+1). Is3 can be either 0 (radix-2), 1 (radix-4) or 2 (radix-8). Note: When Is3 = 3, instruction has the same bahavior as if it was 0 (radix-2). |
Bit Manipulation Encoding
31: 30 |
29 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|---|
f2 |
ls3[4:0] |
ls2[4:0] |
rs1 |
funct3 |
rD |
opcode |
Mnemonic |
00 |
Luimm5[4:0] |
Iuimm5[4:0] |
src |
000 |
dest |
101 1011 |
cv.extract rD, rs1, Is3, Is2 |
01 |
Luimm5[4:0] |
Iuimm5[4:0] |
src |
000 |
dest |
101 1011 |
cv.extractu rD, rs1, Is3, Is2 |
10 |
Luimm5[4:0] |
Iuimm5[4:0] |
src |
000 |
dest |
101 1011 |
cv.insert rD, rs1, Is3, Is2 |
00 |
Luimm5[4:0] |
Iuimm5[4:0] |
src |
001 |
dest |
101 1011 |
cv.bclr rD, rs1, Is3, Is2 |
01 |
Luimm5[4:0] |
Iuimm5[4:0] |
src |
001 |
dest |
101 1011 |
cv.bset rD, rs1, Is3, Is2 |
11 |
000, Luimm2[1:0] |
Iuimm5[4:0] |
src |
001 |
dest |
101 1011 |
cv.bitrev rD, rs1, Is3, Is2 |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
rs2 |
rs1 |
funct3 |
rD |
opcode |
|
001 1000 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.extractr rD, rs1, rs2 |
001 1001 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.extractur rD, rs1, rs2 |
001 1010 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.insertr rD, rs1, rs2 |
001 1100 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.bclrr rD, rs1, rs2 |
001 1101 |
src2 |
scr1 |
011 |
dest |
010 1011 |
cv.bsetr rD, rs1, rs2 |
010 0000 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.ror rD, rs1, rs2 |
010 0001 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.ff1 rD, rs1 |
010 0010 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.fl1 rD, rs1 |
010 0011 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.clb rD, rs1 |
010 0100 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.cnt rD, rs1 |
General ALU operations
Mnemonic |
Description |
---|---|
cv.abs rD, rs1 |
rD = rs1 < 0 ? -rs1 : rs1 |
cv.slet rD, rs1, rs2 |
rD = rs1 <= rs2 ? 1 : 0 Note: Comparison is signed. |
cv.sletu rD, rs1, rs2 |
rD = rs1 <= rs2 ? 1 : 0 Note: Comparison is unsigned. |
cv.min rD, rs1, rs2 |
rD = rs1 < rs2 ? rs1 : rs2 Note: Comparison is signed. |
cv.minu rD, rs1, rs2 |
rD = rs1 < rs2 ? rs1 : rs2 Note: Comparison is unsigned. |
cv.max rD, rs1, rs2 |
rD = rs1 < rs2 ? rs2 : rs1 Note: Comparison is signed. |
cv.maxu rD, rs1, rs2 |
rD = rs1 < rs2 ? rs2 : rs1 Note: Comparison is unsigned. |
cv.exths rD, rs1 |
rD = Sext(rs1[15:0]) |
cv.exthz rD, rs1 |
rD = Zext(rs1[15:0]) |
cv.extbs rD, rs1 |
rD = Sext(rs1[7:0]) |
cv.extbz rD, rs1 |
rD = Zext(rs1[7:0]) |
cv.clip rD, rs1, Is2 |
if rs1 <= -2^(Is2-1), rD = -2^(Is2-1), else if rs1 >= 2^(Is2-1)-1, rD = 2^(Is2-1)-1, else rD = rs1 Note: If ls2 is equal to 0, -2^(Is2-1) is equivalent to -1 while (2^(Is2-1)-1) is equivalent to 0. |
cv.clipu rD, rs1, Is2 |
if rs1 <= 0, rD = 0, else if rs1 >= 2^(Is2-1)-1, rD = 2^(Is2-1)-1, else rD = rs1 Note: If ls2 is equal to 0, (2^(Is2-1)-1) is equivalent to 0. |
cv.clipr rD, rs1, rs2 |
if rs1 <= -(rs2+1), rD = -(rs2+1), else if rs1 >=rs2, rD = rs2, else rD = rs1 |
cv.clipur rD, rs1, rs2 |
if rs1 <= 0, rD = 0, else if rs1 >= rs2, rD = rs2, else rD = rs1 |
cv.addN rD, rs1, rs2, Is3 |
rD = (rs1 + rs2) >>> Is3 Note: Arithmetic shift right. Setting Is3 to 1 replaces former cv.avg. |
cv.adduN rD, rs1, rs2, Is3 |
rD = (rs1 + rs2) >> Is3 Note: Logical shift right. Setting Is3 to 1 replaces former cv.avgu. |
cv.addRN rD, rs1, rs2, Is3 |
rD = (rs1 + rs2 + 2^(Is3-1)) >>> Is3 Note: Arithmetic shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.adduRN rD, rs1, rs2, Is3 |
rD = (rs1 + rs2 + 2^(Is3-1))) >> Is3 Note: Logical shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.subN rD, rs1, rs2, Is3 |
rD = (rs1 - rs2) >>> Is3 Note: Arithmetic shift right. |
cv.subuN rD, rs1, rs2, Is3 |
rD = (rs1 - rs2) >> Is3 Note: Logical shift right. |
cv.subRN rD, rs1, rs2, Is3 |
rD = (rs1 - rs2 + 2^(Is3-1)) >>> Is3 Note: Arithmetic shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.subuRN rD, rs1, rs2, Is3 |
rD = (rs1 - rs2 + 2^(Is3-1))) >> Is3 Note: Logical shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.addNr rD, rs1, rs2 |
rD = (rD + rs1) >>> rs2[4:0] Note: Arithmetic shift right. |
cv.adduNr rD, rs1, rs2 |
rD = (rD + rs1) >> rs2[4:0] Note: Logical shift right. |
cv.addRNr rD, rs1, rs2 |
rD = (rD + rs1 + 2^(rs2[4:0]-1)) >>> rs2[4:0] Note: Arithmetic shift right. If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0. |
cv.adduRNr rD, rs1, rs2 |
rD = (rD + rs1 + 2^(rs2[4:0]-1))) >> rs2[4:0] Note: Logical shift right. If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0. |
cv.subNr rD, rs1, rs2 |
rD = (rD - rs1) >>> rs2[4:0] Note: Arithmetic shift right. |
cv.subuNr rD, rs1, rs2 |
rD = (rD - rs1) >> rs2[4:0] Note: Logical shift right. |
cv.subRNr rD, rs1, rs2 |
rD = (rD - rs1+ 2^(rs2[4:0]-1)) >>> rs2[4:0] Note: Arithmetic shift right. If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0. |
cv.subuRNr rD, rs1, rs2 |
rD = (rD - rs1+ 2^(rs2[4:0]-1))) >> rs2[4:0] Note: Logical shift right. If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0. |
General ALU Encoding
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
rs2 |
rs1 |
funct3 |
rD |
opcode |
|
010 1000 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.abs rD, rs1 |
010 1001 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.slet rD, rs1, rs2 |
010 1010 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.sletu rD, rs1, rs2 |
010 1011 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.min rD, rs1, rs2 |
010 1100 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.minu rD, rs1, rs2 |
010 1101 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.max rD, rs1, rs2 |
010 1110 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.maxu rD, rs1, rs2 |
011 0000 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.exths rD, rs1 |
011 0001 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.exthz rD, rs1 |
011 0010 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.extbs rD, rs1 |
011 0011 |
00000 |
src1 |
011 |
dest |
010 1011 |
cv.extbz rD, rs1 |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
Is2[4:0] |
rs1 |
funct3 |
rD |
opcode |
|
011 1000 |
Iuimm5[4:0] |
src1 |
011 |
dest |
010 1011 |
cv.clip rD, rs1, Is2 |
011 1001 |
Iuimm5[4:0] |
src1 |
011 |
dest |
010 1011 |
cv.clipu rD, rs1, Is2 |
011 1010 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.clipr rD, rs1, rs2 |
011 1011 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.clipur rD, rs1, rs2 |
31: 30 |
29 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|---|
f2 |
Is3[4:0] |
rs2 |
rs1 |
funct3 |
rD |
opcode |
|
00 |
Luimm5[4:0] |
src2 |
src1 |
010 |
dest |
101 1011 |
cv.addN rD, rs1, rs2, Is3 |
01 |
Luimm5[4:0] |
src2 |
src1 |
010 |
dest |
101 1011 |
cv.adduN rD, rs1, rs2, Is3 |
10 |
Luimm5[4:0] |
src2 |
src1 |
010 |
dest |
101 1011 |
cv.addRN rD, rs1, rs2, Is3 |
11 |
Luimm5[4:0] |
src2 |
src1 |
010 |
dest |
101 1011 |
cv.adduRN rD, rs1, rs2, Is3 |
00 |
Luimm5[4:0] |
src2 |
src1 |
011 |
dest |
101 1011 |
cv.subN rD, rs1, rs2, Is3 |
01 |
Luimm5[4:0] |
src2 |
src1 |
011 |
dest |
101 1011 |
cv.subuN rD, rs1, rs2, Is3 |
10 |
Luimm5[4:0] |
src2 |
src1 |
011 |
dest |
101 1011 |
cv.subRN rD, rs1, rs2, Is3 |
11 |
Luimm5[4:0] |
src2 |
src1 |
011 |
dest |
101 1011 |
cv.subuRN rD, rs1, rs2, Is3 |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
Is3[4:0] |
rs1 |
funct3 |
rD |
opcode |
|
100 0000 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.addNr rD, rs1, rs2 |
100 0001 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.adduNr rD, rs1, rs |
100 0010 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.addRNr rD, rs1, rs |
100 0011 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.adduRNr rD, rs1, rs2 |
100 0100 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.subNr rD, rs1, rs2 |
100 0101 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.subuNr rD, rs1, rs2 |
100 0110 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.subRNr rD, rs1, rs2 |
100 0111 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.subuRNr rD, rs1, rs2 |
Immediate Branching operations
Mnemonic |
Description |
---|---|
cv.beqimm rs1, Imm5, Imm12 |
Branch to PC + (Imm12 << 1) if rs1 is equal to Imm5. Note: Imm5 is signed. |
cv.bneimm rs1, Imm5, Imm12 |
Branch to PC + (Imm12 << 1) if rs1 is not equal to Imm5. Note: Imm5 is signed. |
Immediate Branching Encoding
31 |
30 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 8 |
7 |
6 : 0 |
|
---|---|---|---|---|---|---|---|---|
Imm12[12] |
Imm12[10:5] |
Imm5 |
rs1 |
funct3 |
Imm12 |
Imm12 |
opcode |
|
Imm12[12] |
Imm12[10:5] |
Imm5 |
src1 |
110 |
Imm12[4:1] |
Imm12[11] |
000 1011 |
cv.beqimm rs1, Imm5, Imm12 |
Imm12[12] |
Imm12[10:5] |
Imm5 |
src1 |
111 |
Imm12[4:1] |
Imm12[11] |
000 1011 |
cv.bneimm rs1, Imm5, Imm12 |
Multiply-Accumulate
CV32E40P supports custom extensions for multiply-accumulate and half-word multiplications with an optional post-multiplication shift.
The custom multiply-accumulate extensions are only supported if COREV_PULP
== 1.
16-Bit x 16-Bit Multiplication operations
Mnemonic |
Description |
---|---|
cv.muluN rD, rs1, rs2, Is3 |
rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0])) >> Is3 Note: Logical shift right. |
cv.mulhhuN rD, rs1, rs2, Is3 |
rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16])) >> Is3 Note: Logical shift right. |
cv.mulsN rD, rs1, rs2, Is3 |
rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0])) >>> Is3 Note: Arithmetic shift right. |
cv.mulhhsN rD, rs1, rs2, Is3 |
rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16])) >>> Is3 Note: Arithmetic shift right. |
cv.muluRN rD, rs1, rs2, Is3 |
rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + 2^(Is3-1)) >> Is3 Note: Logical shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.mulhhuRN rD, rs1, rs2, Is3 |
rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + 2^(Is3-1)) >> Is3 Note: Logical shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.mulsRN rD, rs1, rs2, Is3 |
rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + 2^(Is3-1)) >>> Is3 Note: Arithmetic shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.mulhhsRN rD, rs1, rs2, Is3 |
rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + 2^(Is3-1)) >>> Is3 Note: Arithmetic shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
16-Bit x 16-Bit Multiplication pseudo-instructions
Mnemonic |
Base Instruction |
Description |
---|---|---|
cv.mulu rD, rs1, rs2 |
cv.muluN rD, rs1, rs2, 0 |
rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0])) >> 0 Note: Logical shift right. |
cv.mulhhu rD, rs1, rs2 |
cv.mulhhuN rD, rs1, rs2, 0 |
rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16])) >> 0 Note: Logical shift right. |
cv.muls rD, rs1, rs2 |
cv.mulsN rD, rs1, rs2, 0 |
rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0])) >> 0 Note: Arithmetic shift right. |
cv.mulhhs rD, rs1, rs2 |
cv.mulhhsN rD, rs1, rs2, 0 |
rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16])) >> 0 Note: Arithmetic shift right. |
16-Bit x 16-Bit Multiply-Accumulate operations
Mnemonic |
Description |
---|---|
cv.macuN rD, rs1, rs2, Is3 |
rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + rD) >> Is3 Note: Logical shift right. |
cv.machhuN rD, rs1, rs2, Is3 |
rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + rD) >> Is3 Note: Logical shift right. |
cv.macsN rD, rs1, rs2, Is3 |
rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + rD) >>> Is3 Note: Arithmetic shift right. |
cv.machhsN rD, rs1, rs2, Is3 |
rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + rD) >>> Is3 Note: Arithmetic shift right. |
cv.macuRN rD, rs1, rs2, Is3 |
rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + rD + 2^(Is3-1)) >> Is3 Note: Logical shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.machhuRN rD, rs1, rs2, Is3 |
rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + rD + 2^(Is3-1)) >> Is3 Note: Logical shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.macsRN rD, rs1, rs2, Is3 |
rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + rD + 2^(Is3-1)) >>> Is3 Note: Arithmetic shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
cv.machhsRN rD, rs1, rs2, Is3 |
rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + rD + 2^(Is3-1)) >>> Is3 Note: Arithmetic shift right. If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0. |
32-Bit x 32-Bit Multiply-Accumulate operations
Mnemonic |
Description |
---|---|
cv.mac rD, rs1, rs2 |
rD = rD + rs1 * rs2 |
cv.msu rD, rs1, rs2 |
rD = rD - rs1 * rs2 |
Encoding
31: 30 |
29 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|---|
f2 |
Is3[4:0] |
rs2 |
rs1 |
funct3 |
rD |
opcode |
|
00 |
Luimm5[4:0] |
src2 |
src1 |
101 |
dest |
101 1011 |
cv.muluN rD, rs1, rs2, Is3 |
01 |
Luimm5[4:0] |
src2 |
src1 |
101 |
dest |
101 1011 |
cv.mulhhuN rD, rs1, rs2, Is3 |
00 |
Luimm5[4:0] |
src2 |
src1 |
100 |
dest |
101 1011 |
cv.mulsN rD, rs1, rs2, Is3 |
01 |
Luimm5[4:0] |
src2 |
src1 |
100 |
dest |
101 1011 |
cv.mulhhsN rD, rs1, rs2, Is3 |
10 |
Luimm5[4:0] |
src2 |
src1 |
101 |
dest |
101 1011 |
cv.muluRN rD, rs1, rs2, Is3 |
11 |
Luimm5[4:0] |
src2 |
src1 |
101 |
dest |
101 1011 |
cv.mulhhuRN rD, rs1, rs2, Is3 |
10 |
Luimm5[4:0] |
src2 |
src1 |
100 |
dest |
101 1011 |
cv.mulsRN rD, rs1, rs2, Is3 |
11 |
Luimm5[4:0] |
src2 |
src1 |
100 |
dest |
101 1011 |
cv.mulhhsRN rD, rs1, rs2, Is3 |
31: 30 |
29 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|---|
f2 |
Is3[4:0] |
rs2 |
rs1 |
funct3 |
rD |
opcode |
|
00 |
Luimm5[4:0] |
src2 |
src1 |
111 |
dest |
101 1011 |
cv.macuN rD, rs1, rs2, Is3 |
01 |
Luimm5[4:0] |
src2 |
src1 |
111 |
dest |
101 1011 |
cv.machhuN rD, rs1, rs2, Is3 |
00 |
Luimm5[4:0] |
src2 |
src1 |
110 |
dest |
101 1011 |
cv.macsN rD, rs1, rs2, Is3 |
01 |
Luimm5[4:0] |
src2 |
src1 |
110 |
dest |
101 1011 |
cv.machhsN rD, rs1, rs2, Is3 |
10 |
Luimm5[4:0] |
src2 |
src1 |
111 |
dest |
101 1011 |
cv.macuRN rD, rs1, rs2, Is3 |
11 |
Luimm5[4:0] |
src2 |
src1 |
111 |
dest |
101 1011 |
cv.machhuRN rD, rs1, rs2, Is3 |
10 |
Luimm5[4:0] |
src2 |
src1 |
110 |
dest |
101 1011 |
cv.macsRN rD, rs1, rs2, Is3 |
11 |
Luimm5[4:0] |
src2 |
src1 |
110 |
dest |
101 1011 |
cv.machhsRN rD, rs1, rs2, Is3 |
31 : 25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|
funct7 |
rs2 |
rs1 |
funct3 |
rD |
opcode |
|
100 1000 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.mac rD, rs1, rs2 |
100 1001 |
src2 |
src1 |
011 |
dest |
010 1011 |
cv.msu rD, rs1, rs2 |
SIMD
The SIMD instructions perform operations on multiple sub-word elements at the same time. This is done by segmenting the data path into smaller parts when 8- or 16-bit operations should be performed.
The custom SIMD extensions are only supported if COREV_PULP
== 1.
Note
See the comments at the start of CORE-V Instruction Set Custom Extensions on availability of the compiler tool chains. Support for SIMD will be primarily through assembly code and builtin functions, with no auto-vectorization and limited other optimization. Simple auto-vectorization (add, sub…) and optimization will be evaluated once a stable GCC toolchain is available.
SIMD instructions are available in two flavors:
8-Bit, to perform four operations on the 4 bytes inside a 32-bit word at the same time (.b)
16-Bit, to perform two operations on the 2 half-words inside a 32-bit word at the same time (.h)
All the operations are rounded to the specified bidwidth as for the original RISC-V arithmetic operations. This is described by the “and” operation with a MASK. No overflow or carry-out flags are generated as for the 32-bit operations.
Additionally, there are three modes that influence the second operand:
Normal mode, vector-vector operation. Both operands, from rs1 and rs2, are treated as vectors of bytes or half-words.
e.g. cv.add.h x3,x2,x1 performs:
x3[31:16] = x2[31:16] + x1[31:16]
x3[15: 0] = x2[15: 0] + x1[15: 0]
Scalar replication mode (.sc), vector-scalar operation. Operand 1 is treated as a vector, while operand 2 is treated as a scalar and replicated two or four times to form a complete vector. The LSP is used for this purpose.
e.g. cv.add.sc.h x3,x2,x1 performs:
x3[31:16] = x2[31:16] + x1[15: 0]
x3[15: 0] = x2[15: 0] + x1[15: 0]
Immediate scalar replication mode (.sci), vector-scalar operation. Operand 1 is treated as vector, while operand 2 is treated as a scalar and comes from a 6-bit immediate.
The immediate is either sign- or zero-extended depending on the operation. If not specified, the immediate is sign-extended with the exception of all cv.shuffle* where it is always unsigned.
e.g. cv.add.sci.h x3,x2,0x2A performs:
x3[31:16] = x2[31:16] + 0xFFEA
x3[15: 0] = x2[15: 0] + 0xFFEA
In the following tables, the index i ranges from 0 to 1 for 16-Bit operations and from 0 to 3 for 8-Bit operations:
The index 0 is 15:0 for 16-Bit operations or 7:0 for 8-Bit operations.
The index 1 is 31:16 for 16-Bit operations or 15:8 for 8-Bit operations.
The index 2 is 23:16 for 8-Bit operations.
The index 3 is 31:24 for 8-Bit operations.
And I5, I4, I3, I2, I1 and I0 respectively represent bits 5, 4, 3, 2, 1 and 0 of the immediate value.
SIMD ALU operations
Mnemonic |
Description |
---|---|
cv.add[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = (rs1[i] + op2[i]) & 0xFFFF |
cv.sub[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = (rs1[i] - op2[i]) & 0xFFFF |
cv.avg[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = ((rs1[i] + op2[i]) & {0xFFFF, 0xFF}) >> 1 Note: Arithmetic right shift. |
cv.avgu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = ((rs1[i] + op2[i]) & {0xFFFF, 0xFF}) >> 1 Note: Immediate is zero-extended, shift is logical. |
cv.min[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] < op2[i] ? rs1[i] : op2[i] |
cv.minu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] < op2[i] ? rs1[i] : op2[i] Note: Immediate is zero-extended, comparison is unsigned. |
cv.max[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] > op2[i] ? rs1[i] : op2[i] |
cv.maxu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] > op2[i] ? rs1[i] : op2[i] Note: Immediate is zero-extended, comparison is unsigned. |
cv.srl[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] >> op2[i] Note: Immediate is zero-extended, shift is logical. Only Imm6[3:0] and rs2[3:0] are used for .h instruction and Imm6[2:0] and rs2[2:0] for .b instruction. Other bits are not used and must be set to 0. |
cv.sra[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] >>> op2[i] Note: Immediate is zero-extended, shift is arithmetic. Only Imm6[3:0] and rs2[3:0] are used for .h instruction and Imm6[2:0] and rs2[2:0] for .b instruction. Other bits are not used and must be set to 0. |
cv.sll[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] << op2[i] Note: Immediate is zero-extended, shift is logical. Only Imm6[3:0] and rs2[3:0] are used for .h instruction and Imm6[2:0] and rs2[2:0] for .b instruction. Other bits are not used and must be set to 0. |
cv.or[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] | op2[i] |
cv.xor[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] ^ op2[i] |
cv.and[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] & op2[i] |
cv.abs{.h,.b} rD, rs1 |
rD[i] = rs1[i] < 0 ? -rs1[i] : rs1[i] |
SIMD Bit Manipulation operations
Mnemonic |
Description |
---|---|
cv.extract.h rD, rs1, Imm6 |
rD = Sext(rs1[I0*16+15:I0*16]) |
cv.extract.b rD, rs1, Imm6 |
rD = Sext(rs1[(I1:I0)*8+7:(I1:I0)*8]) |
cv.extractu.h rD, rs1, Imm6 |
rD = Zext(rs1[I0*16+15:I0*16]) |
cv.extractu.b rD, rs1, Imm6 |
rD = Zext(rs1[(I1:I0)*8+7:(I1:I0)*8]) |
cv.insert.h rD, rs1, Imm6 |
rD[I0*16+15:I0*16] = rs1[15:0] Note: The rest of the bits of rD are untouched and keep their previous value. |
cv.insert.b rD, rs1, Imm6 |
rD[(I1:I0)*8+7:(I1:I0)*8] = rs1[7:0] Note: The rest of the bits of rD are untouched and keep their previous value. |
SIMD Dot Product operations
Mnemonic |
Description |
---|---|
cv.dotup[.sc,.sci].h rD, rs1, [rs2, Imm6] |
rD = rs1[0] * op2[0] + rs1[1] * op2[1] Note: All operands are unsigned. |
cv.dotup[.sc,.sci].b rD, rs1, [rs2, Imm6] |
rD = rs1[0] * op2[0] + rs1[1] * op2[1] + rs1[2] * op2[2] + rs1[3] * op2[3] Note: All operands are unsigned. |
cv.dotusp[.sc,.sci].h rD, rs1, [rs2, Imm6] |
rD = rs1[0] * op2[0] + rs1[1] * op2[1] Note: rs1 is treated as unsigned, while op2 is treated as signed. |
cv.dotusp[.sc,.sci].b rD, rs1, [rs2, Imm6] |
rD = rs1[0] * op2[0] + rs1[1] * op2[1] + rs1[2] * op2[2] + rs1[3] * op2[3] Note: rs1 is treated as unsigned, while op2 is treated as signed. |
cv.dotsp[.sc,.sci].h rD, rs1, [rs2, Imm6] |
rD = rs1[0] * op2[0] + rs1[1] * op2[1] Note: All operands are signed. |
cv.dotsp[.sc,.sci].b rD, rs1, [rs2, Imm6] |
rD = rs1[0] * op2[0] + rs1[1] * op2[1] + rs1[2] * op2[2] + rs1[3] * op2[3] Note: All operands are signed. |
cv.sdotup[.sc,.sci].h rD, rs1, [rs2, Imm6] |
rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] Note: All operands are unsigned. |
cv.sdotup[.sc,.sci].b rD, rs1, [rs2, Imm6] |
rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] + rs1[2] * op2[2] + rs1[3] * op2[3] Note: All operands are unsigned. |
cv.sdotusp[.sc,.sci].h rD, rs1, [rs2, Imm6] |
rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] Note: rs1 is treated as unsigned while op2 is treated as signed. |
cv.sdotusp[.sc,.sci].b rD, rs1, [rs2, Imm6] |
rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] + rs1[2] * op2[2] + rs1[3] * op2[3] Note: rs1 is treated as unsigned while op2 is treated as signed. |
cv.sdotsp[.sc,.sci].h rD, rs1, [rs2, Imm6] |
rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] Note: All operands are signed. |
cv.sdotsp[.sc,.sci].b rD, rs1, [rs2, Imm6] |
rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] + rs1[2] * op2[2] + rs1[3] * op2[3] Note: All operands are signed. |
SIMD Shuffle and Pack operations
Mnemonic |
Description |
---|---|
cv.shuffle.h rD, rs1, rs2 |
rD[31:16] = rs1[rs2[16]*16+15:rs2[16]*16] rD[15:0] = rs1[rs2[0]*16+15:rs2[0]*16] |
cv.shuffle.sci.h rD, rs1, Imm6 |
rD[31:16] = rs1[I1*16+15:I1*16] rD[15:0] = rs1[I0*16+15:I0*16] |
cv.shuffle.b rD, rs1, rs2 |
rD[31:24] = rs1[rs2[25:24]*8+7:rs2[25:24]*8] rD[23:16] = rs1[rs2[17:16]*8+7:rs2[17:16]*8] rD[15:8] = rs1[rs2[9:8]*8+7:rs2[9:8]*8] rD[7:0] = rs1[rs2[1:0]*8+7:rs2[1:0]*8] |
cv.shuffleI0.sci.b rD, rs1, Imm6 |
rD[31:24] = rs1[7:0] rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8] rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8] rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8] |
cv.shuffleI1.sci.b rD, rs1, Imm6 |
rD[31:24] = rs1[15:8] rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8] rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8] rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8] |
cv.shuffleI2.sci.b rD, rs1, Imm6 |
rD[31:24] = rs1[23:16] rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8] rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8] rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8] |
cv.shuffleI3.sci.b rD, rs1, Imm6 |
rD[31:24] = rs1[31:24] rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8] rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8] rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8] |
cv.shuffle2.h rD, rs1, rs2 |
rD[31:16] = ((rs2[17] == 1) ? rs1 : rD)[rs2[16]*16+15:rs2[16]*16] rD[15:0] = ((rs2[1] == 1) ? rs1 : rD)[rs2[0]*16+15:rs2[0]*16] |
cv.shuffle2.b rD, rs1, rs2 |
rD[31:24] = ((rs2[26] == 1) ? rs1 : rD)[rs2[25:24]*8+7:rs2[25:24]*8] rD[23:16] = ((rs2[18] == 1) ? rs1 : rD)[rs2[17:16]*8+7:rs2[17:16]*8] rD[15:8] = ((rs2[10] == 1) ? rs1 : rD)[rs2[9:8]*8+7:rs2[9:8]*8] rD[7:0] = ((rs2[2] == 1) ? rs1 : rD)[rs2[1:0]*8+7:rs2[1:0]*8] |
cv.pack rD, rs1, rs2 |
rD[31:16] = rs1[15:0] rD[15:0] = rs2[15:0] |
cv.pack.h rD, rs1, rs2 |
rD[31:16] = rs1[31:16] rD[15:0] = rs2[31:16] |
cv.packhi.b rD, rs1, rs2 |
rD[31:24] = rs1[7:0] rD[23:16] = rs2[7:0] Note: The rest of the bits of rD are untouched and keep their previous value. |
cv.packlo.b rD, rs1, rs2 |
rD[15:8] = rs1[7:0] rD[7:0] = rs2[7:0] Note: The rest of the bits of rD are untouched and keep their previous value. |
SIMD ALU Encoding
31 : 27 |
26 |
25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|---|---|
funct5 |
F |
rs2 |
rs1 |
funct3 |
rD |
opcode |
||
0 0000 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.add.h rD, rs1, rs2 |
0 0000 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.add.sc.h rD, rs1, rs2 |
0 0000 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.add.sci.h rD, rs1, Imm6 |
|
0 0000 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.add.b rD, rs1, rs2 |
0 0000 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.add.sc.b rD, rs1, rs2 |
0 0000 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.add.sci.b rD, rs1, Imm6 |
|
0 0001 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.sub.h rD, rs1, rs2 |
0 0001 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.sub.sc.h rD, rs1, rs2 |
0 0001 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.sub.sci.h rD, rs1, Imm6 |
|
0 0001 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.sub.b rD, rs1, rs2 |
0 0001 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.sub.sc.b rD, rs1, rs2 |
0 0001 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.sub.sci.b rD, rs1, Imm6 |
|
0 0010 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.avg.h rD, rs1, rs2 |
0 0010 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.avg.sc.h rD, rs1, rs2 |
0 0010 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.avg.sci.h rD, rs1, Imm6 |
|
0 0010 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.avg.b rD, rs1, rs2 |
0 0010 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.avg.sc.b rD, rs1, rs2 |
0 0010 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.avg.sci.b rD, rs1, Imm6 |
|
0 0011 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.avgu.h rD, rs1, rs2 |
0 0011 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.avgu.sc.h rD, rs1, rs2 |
0 0011 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.avgu.sci.h rD, rs1, Imm6 |
|
0 0011 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.avgu.b rD, rs1, rs2 |
0 0011 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.avgu.sc.b rD, rs1, rs2 |
0 0011 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.avgu.sci.b rD, rs1, Imm6 |
|
0 0100 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.min.h rD, rs1, rs2 |
0 0100 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.min.sc.h rD, rs1, rs2 |
0 0100 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.min.sci.h rD, rs1, Imm6 |
|
0 0100 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.min.b rD, rs1, rs2 |
0 0100 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.min.sc.b rD, rs1, rs2 |
0 0100 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.min.sci.b rD, rs1, Imm6 |
|
0 0101 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.minu.h rD, rs1, rs2 |
0 0101 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.minu.sc.h rD, rs1, rs2 |
0 0101 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.minu.sci.h rD, rs1, Imm6 |
|
0 0101 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.minu.b rD, rs1, rs2 |
0 0101 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.minu.sc.b rD, rs1, rs2 |
0 0101 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.minu.sci.b rD, rs1, Imm6 |
|
0 0110 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.max.h rD, rs1, rs2 |
0 0110 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.max.sc.h rD, rs1, rs2 |
0 0110 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.max.sci.h rD, rs1, Imm6 |
|
0 0110 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.max.b rD, rs1, rs2 |
0 0110 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.max.sc.b rD, rs1, rs2 |
0 0110 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.max.sci.b rD, rs1, Imm6 |
|
0 0111 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.maxu.h rD, rs1, rs2 |
0 0111 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.maxu.sc.h rD, rs1, rs2 |
0 0111 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.maxu.sci.h rD, rs1, Imm6 |
|
0 0111 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.maxu.b rD, rs1, rs2 |
0 0111 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.maxu.sc.b rD, rs1, rs2 |
0 0111 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.maxu.sci.b rD, rs1, Imm6 |
|
0 1000 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.srl.h rD, rs1, rs2 |
0 1000 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.srl.sc.h rD, rs1, rs2 |
0 1000 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.srl.sci.h rD, rs1, Imm6 |
|
0 1000 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.srl.b rD, rs1, rs2 |
0 1000 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.srl.sc.b rD, rs1, rs2 |
0 1000 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.srl.sci.b rD, rs1, Imm6 |
|
0 1001 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.sra.h rD, rs1, rs2 |
0 1001 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.sra.sc.h rD, rs1, rs2 |
0 1001 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.sra.sci.h rD, rs1, Imm6 |
|
0 1001 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.sra.b rD, rs1, rs2 |
0 1001 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.sra.sc.b rD, rs1, rs2 |
0 1001 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.sra.sci.b rD, rs1, Imm6 |
|
0 1010 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.sll.h rD, rs1, rs2 |
0 1010 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.sll.sc.h rD, rs1, rs2 |
0 1010 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.sll.sci.h rD, rs1, Imm6 |
|
0 1010 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.sll.b rD, rs1, rs2 |
0 1010 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.sll.sc.b rD, rs1, rs2 |
0 1010 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.sll.sci.b rD, rs1, Imm6 |
|
0 1011 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.or.h rD, rs1, rs2 |
0 1011 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.or.sc.h rD, rs1, rs2 |
0 1011 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.or.sci.h rD, rs1, Imm6 |
|
0 1011 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.or.b rD, rs1, rs2 |
0 1011 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.or.sc.b rD, rs1, rs2 |
0 1011 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.or.sci.b rD, rs1, Imm6 |
|
0 1100 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.xor.h rD, rs1, rs2 |
0 1100 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.xor.sc.h rD, rs1, rs2 |
0 1100 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.xor.sci.h rD, rs1, Imm6 |
|
0 1100 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.xor.b rD, rs1, rs2 |
0 1100 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.xor.sc.b rD, rs1, rs2 |
0 1100 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.xor.sci.b rD, rs1, Imm6 |
|
0 1101 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.and.h rD, rs1, rs2 |
0 1101 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.and.sc.h rD, rs1, rs2 |
0 1101 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.and.sci.h rD, rs1, Imm6 |
|
0 1101 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.and.b rD, rs1, rs2 |
0 1101 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.and.sc.b rD, rs1, rs2 |
0 1101 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.and.sci.b rD, rs1, Imm6 |
|
0 1110 |
0 |
0 |
0 |
src1 |
000 |
dest |
111 1011 |
cv.abs.h rD, rs1 |
0 1110 |
0 |
0 |
0 |
src1 |
001 |
dest |
111 1011 |
cv.abs.b rD, rs1 |
1 0111 |
0 |
Imm6[0|5:1] |
src1 |
000 |
dest |
111 1011 |
cv.extract.h rD, rs1, Imm6 |
|
1 0111 |
0 |
Imm6[0|5:1] |
src1 |
001 |
dest |
111 1011 |
cv.extract.b rD, rs1, Imm6 |
|
1 0111 |
0 |
Imm6[0|5:1] |
src1 |
010 |
dest |
111 1011 |
cv.extractu.h rD, rs1, Imm6 |
|
1 0111 |
0 |
Imm6[0|5:1] |
src1 |
011 |
dest |
111 1011 |
cv.extractu.b rD, rs1, Imm6 |
|
1 0111 |
0 |
Imm6[0|5:1] |
src1 |
100 |
dest |
111 1011 |
cv.insert.h rD, rs1, Imm6 |
|
1 0111 |
0 |
Imm6[0|5:1] |
src1 |
101 |
dest |
111 1011 |
cv.insert.b rD, rs1, Imm6 |
|
1 0000 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.dotup.h rD, rs1, rs2 |
1 0000 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.dotup.sc.h rD, rs1, rs2 |
1 0000 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.dotup.sci.h rD, rs1, Imm6 |
|
1 0000 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.dotup.b rD, rs1, rs2 |
1 0000 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.dotup.sc.b rD, rs1, rs2 |
1 0000 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.dotup.sci.b rD, rs1, Imm6 |
|
1 0001 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.dotusp.h rD, rs1, rs2 |
1 0001 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.dotusp.sc.h rD, rs1, rs2 |
1 0001 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.dotusp.sci.h rD, rs1, Imm6 |
|
1 0001 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.dotusp.b rD, rs1, rs2 |
1 0001 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.dotusp.sc.b rD, rs1, rs2 |
1 0001 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.dotusp.sci.b rD, rs1, Imm6 |
|
1 0010 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.dotsp.h rD, rs1, rs2 |
1 0010 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.dotsp.sc.h rD, rs1, rs2 |
1 0010 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.dotsp.sci.h rD, rs1, Imm6 |
|
1 0010 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.dotsp.b rD, rs1, rs2 |
1 0010 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.dotsp.sc.b rD, rs1, rs2 |
1 0010 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.dotsp.sci.b rD, rs1, Imm6 |
|
1 0011 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.sdotup.h rD, rs1, rs2 |
1 0011 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.sdotup.sc.h rD, rs1, rs2 |
1 0011 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.sdotup.sci.h rD, rs1, Imm6 |
|
1 0011 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.sdotup.b rD, rs1, rs2 |
1 0011 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.sdotup.sc.b rD, rs1, rs2 |
1 0011 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.sdotup.sci.b rD, rs1, Imm6 |
|
1 0100 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.sdotusp.h rD, rs1, rs2 |
1 0100 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.sdotusp.sc.h rD, rs1, rs2 |
1 0100 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.sdotusp.sci.h rD, rs1, Imm6 |
|
1 0100 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.sdotusp.b rD, rs1, rs2 |
1 0100 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.sdotusp.sc.b rD, rs1, rs2 |
1 0100 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.sdotusp.sci.b rD, rs1, Imm6 |
|
1 0101 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.sdotsp.h rD, rs1, rs2 |
1 0101 |
0 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.sdotsp.sc.h rD, rs1, rs2 |
1 0101 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.sdotsp.sci.h rD, rs1, Imm6 |
|
1 0101 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.sdotsp.b rD, rs1, rs2 |
1 0101 |
0 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.sdotsp.sc.b rD, rs1, rs2 |
1 0101 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.sdotsp.sci.b rD, rs1, Imm6 |
|
1 1000 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.shuffle.h rD, rs1, rs2 |
1 1000 |
0 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.shuffle.sci.h rD, rs1, Imm6 |
|
1 1000 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.shuffle.b rD, rs1, rs2 |
1 1000 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.shuffleI0.sci.b rD, rs1, Imm6 |
|
1 1001 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.shuffleI1.sci.b rD, rs1, Imm6 |
|
1 1010 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.shuffleI2.sci.b rD, rs1, Imm6 |
|
1 1011 |
0 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.shuffleI3.sci.b rD, rs1, Imm6 |
|
1 1100 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.shuffle2.h rD, rs1, rs2 |
1 1100 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.shuffle2.b rD, rs1, rs2 |
1 1110 |
0 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.pack rD, rs1, rs2 |
1 1110 |
0 |
1 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.pack.h rD, rs1, rs2 |
1 1111 |
0 |
1 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.packhi.b rD, rs1, rs2 |
1 1111 |
0 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.packlo.b rD, rs1, rs2 |
SIMD Comparison operations
SIMD comparisons are done on individual bytes (.b) or half-words (.h), depending on the chosen mode. If the comparison result is true, all bits in the corresponding byte/half-word are set to 1. If the comparison result is false, all bits are set to 0.
The default mode (no .sc, .sci) compares the lowest byte/half-word of the first operand with the lowest byte/half-word of the second operand, and so on. If the mode is set to scalar replication (.sc), always the lowest byte/half-word of the second operand is used for comparisons, thus instead of a vector comparison a scalar comparison is performed. In the immediate scalar replication mode (.sci), the immediate given to the instruction is used for the comparison.
Mnemonic |
Description |
---|---|
cv.cmpeq[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] == op2 ? ‘1 : ‘0 |
cv.cmpne[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] != op2 ? ‘1 : ‘0 |
cv.cmpgt[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] > op2 ? ‘1 : ‘0 |
cv.cmpge[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] >=op2 ? ‘1 : ‘0 |
cv.cmplt[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] < op2 ? ‘1 : ‘0 |
cv.cmple[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] <= op2 ? ‘1 : ‘0 |
cv.cmpgtu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] > op2 ? ‘1 : ‘0 Note: Unsigned comparison. |
cv.cmpgeu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] >= op2 ? ‘1 : ‘0 Note: Unsigned comparison. |
cv.cmpltu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] < op2 ? ‘1 : ‘0 Note: Unsigned comparison. |
cv.cmpleu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6] |
rD[i] = rs1[i] <= op2 ? ‘1 : ‘0 Note: Unsigned comparison. |
SIMD Comparison Encoding
31 : 27 |
26 |
25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|---|---|
funct5 |
F |
rs2 |
rs1 |
funct3 |
rD |
opcode |
||
0 0000 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmpeq.h rD, rs1, rs2 |
0 0000 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmpeq.sc.h rD, rs1, rs2 |
0 0000 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmpeq.sci.h rD, rs1, Imm6 |
|
0 0000 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmpeq.b rD, rs1, rs2 |
0 0000 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmpeq.sc.b rD, rs1, rs2 |
0 0000 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmpeq.sci.b rD, rs1, Imm6 |
|
0 0001 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmpne.h rD, rs1, rs2 |
0 0001 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmpne.sc.h rD, rs1, rs2 |
0 0001 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmpne.sci.h rD, rs1, Imm6 |
|
0 0001 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmpne.b rD, rs1, rs2 |
0 0001 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmpne.sc.b rD, rs1, rs2 |
0 0001 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmpne.sci.b rD, rs1, Imm6 |
|
0 0010 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmpgt.h rD, rs1, rs2 |
0 0010 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmpgt.sc.h rD, rs1, rs2 |
0 0010 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmpgt.sci.h rD, rs1, Imm6 |
|
0 0010 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmpgt.b rD, rs1, rs2 |
0 0010 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmpgt.sc.b rD, rs1, rs2 |
0 0010 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmpgt.sci.b rD, rs1, Imm6 |
|
0 0011 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmpge.h rD, rs1, rs2 |
0 0011 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmpge.sc.h rD, rs1, rs2 |
0 0011 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmpge.sci.h rD, rs1, Imm6 |
|
0 0011 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmpge.b rD, rs1, rs2 |
0 0011 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmpge.sc.b rD, rs1, rs2 |
0 0011 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmpge.sci.b rD, rs1, Imm6 |
|
0 0100 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmplt.h rD, rs1, rs2 |
0 0100 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmplt.sc.h rD, rs1, rs2 |
0 0100 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmplt.sci.h rD, rs1, Imm6 |
|
0 0100 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmplt.b rD, rs1, rs2 |
0 0100 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmplt.sc.b rD, rs1, rs2 |
0 0100 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmplt.sci.b rD, rs1, Imm6 |
|
0 0101 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmple.h rD, rs1, rs2 |
0 0101 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmple.sc.h rD, rs1, rs2 |
0 0101 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmple.sci.h rD, rs1, Imm6 |
|
0 0101 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmple.b rD, rs1, rs2 |
0 0101 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmple.sc.b rD, rs1, rs2 |
0 0101 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmple.sci.b rD, rs1, Imm6 |
|
0 0110 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmpgtu.h rD, rs1, rs2 |
0 0110 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmpgtu.sc.h rD, rs1, rs2 |
0 0110 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmpgtu.sci.h rD, rs1, Imm6 |
|
0 0110 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmpgtu.b rD, rs1, rs2 |
0 0110 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmpgtu.sc.b rD, rs1, rs2 |
0 0110 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmpgtu.sci.b rD, rs1, Imm6 |
|
0 0111 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmpgeu.h rD, rs1, rs2 |
0 0111 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmpgeu.sc.h rD, rs1, rs2 |
0 0111 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmpgeu.sci.h rD, rs1, Imm6 |
|
0 0111 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmpgeu.b rD, rs1, rs2 |
0 0111 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmpgeu.sc.b rD, rs1, rs2 |
0 0111 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmpgeu.sci.b rD, rs1, Imm6 |
|
0 1000 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmpltu.h rD, rs1, rs2 |
0 1000 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmpltu.sc.h rD, rs1, rs2 |
0 1000 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmpltu.sci.h rD, rs1, Imm6 |
|
0 1000 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmpltu.b rD, rs1, rs2 |
0 1000 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmpltu.sc.b rD, rs1, rs2 |
0 1000 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmpltu.sci.b rD, rs1, Imm6 |
|
0 1001 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cmpleu.h rD, rs1, rs2 |
0 1001 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cmpleu.sc.h rD, rs1, rs2 |
0 1001 |
1 |
Imm6[0|5:1] |
src1 |
110 |
dest |
111 1011 |
cv.cmpleu.sci.h rD, rs1, Imm6 |
|
0 1001 |
1 |
0 |
src2 |
src1 |
001 |
dest |
111 1011 |
cv.cmpleu.b rD, rs1, rs2 |
0 1001 |
1 |
0 |
src2 |
src1 |
101 |
dest |
111 1011 |
cv.cmpleu.sc.b rD, rs1, rs2 |
0 1001 |
1 |
Imm6[0|5:1] |
src1 |
111 |
dest |
111 1011 |
cv.cmpleu.sci.b rD, rs1, Imm6 |
SIMD Complex-number operations
SIMD Complex-number operations are extra instructions that uses the packed-SIMD extentions to represent Complex-numbers. These extentions use only the half-words mode and only operand in registers. A number C = {Re, Im} is represented as a vector of two 16-Bits signed numbers. C[0] is the real part [15:0], C[1] is the imaginary part [31:16]. Such operations are subtraction of 2 complexes with post rotation by -j, the complex and conjugate, complex multiplications and complex additions/substractions. The complex multiplications are performed in two separate instructions, one to compute the real part, and one to compute the imaginary part.
As for all the other SIMD instructions, no flags are raised and CSR register are unmodified. No carry, overflow is generated. Instructions are rounded up as the mask & 0xFFFF explicits.
Mnemonic |
Description |
---|---|
cv.cplxmul.r{/,.div2,.div4,.div8} |
rD[1] = rD[1] rD[0] = (rs1[0]*rs2[0] - rs1[1]*rs2[1]) >> {15,16,17,18} Note: Arithmetic shift right. |
cv.cplxmul.i{/,.div2,.div4,.div8} |
rD[1] = (rs1[0]*rs2[1] + rs1[1]*rs2[0]) >> {15,16,17,18} rD[0] = rD[0] Note: Arithmetic shift right. |
cv.cplxconj |
rD[1] = -rs1[1] rD[0] = rs1[0] |
cv.subrotmj{/,.div2,.div4,.div8} |
rD[1] = ((rs2[0] - rs1[0]) & 0xFFFF) >> {0,1,2,3} rD[0] = ((rs1[1] - rs2[1]) & 0xFFFF) >> {0,1,2,3} Note: Arithmetic shift right. |
cv.add{.div2,.div4,.div8} |
rD[1] = ((rs1[1] + rs2[1]) & 0xFFFF) >> {1,2,3} rD[0] = ((rs1[0] + rs2[0]) & 0xFFFF) >> {1,2,3} Note: Arithmetic shift right. |
cv.sub{.div2,.div4,.div8} |
rD[1] = ((rs1[1] - rs2[1]) & 0xFFFF) >> {1,2,3} rD[0] = ((rs1[0] - rs2[0]) & 0xFFFF) >> {1,2,3} Note: Arithmetic shift right. |
SIMD Complex-numbers Encoding
31 : 27 |
26 |
25 |
24 : 20 |
19 : 15 |
14 : 12 |
11 : 7 |
6 : 0 |
|
---|---|---|---|---|---|---|---|---|
funct5 |
F |
rs2 |
rs1 |
funct3 |
rD |
opcode |
||
0 1010 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cplxmul.r rD, rs1, rs2 |
0 1010 |
1 |
0 |
src2 |
src1 |
010 |
dest |
111 1011 |
cv.cplxmul.r.div2 rD, rs1, rs2 |
0 1010 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cplxmul.r.div4 rD, rs1, rs2 |
0 1010 |
1 |
0 |
src2 |
src1 |
110 |
dest |
111 1011 |
cv.cplxmul.r.div8 rD, rs1, rs2 |
0 1010 |
1 |
1 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.cplxmul.i rD, rs1, rs2 |
0 1010 |
1 |
1 |
src2 |
src1 |
010 |
dest |
111 1011 |
cv.cplxmul.i.div2 rD, rs1, rs2 |
0 1010 |
1 |
1 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.cplxmul.i.div4 rD, rs1, rs2 |
0 1010 |
1 |
1 |
src2 |
src1 |
110 |
dest |
111 1011 |
cv.cplxmul.i.div8 rD, rs1, rs2 |
0 1011 |
1 |
0 |
00000 |
src1 |
000 |
dest |
111 1011 |
cv.cplxconj rD, rs1 |
0 1100 |
1 |
0 |
src2 |
src1 |
000 |
dest |
111 1011 |
cv.subrotmj rD, rs1, rs2 |
0 1100 |
1 |
0 |
src2 |
src1 |
010 |
dest |
111 1011 |
cv.subrotmj.div2 rD, rs1, rs2 |
0 1100 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.subrotmj.div4 rD, rs1, rs2 |
0 1100 |
1 |
0 |
src2 |
src1 |
110 |
dest |
111 1011 |
cv.subrotmj.div8 rD, rs1, rs2 |
0 1101 |
1 |
0 |
src2 |
src1 |
010 |
dest |
111 1011 |
cv.add.div2 rD, rs1, rs2 |
0 1101 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.add.div4 rD, rs1, rs2 |
0 1101 |
1 |
0 |
src2 |
src1 |
110 |
dest |
111 1011 |
cv.add.div8 rD, rs1, rs2 |
0 1110 |
1 |
0 |
src2 |
src1 |
010 |
dest |
111 1011 |
cv.sub.div2 rD, rs1, rs2 |
0 1110 |
1 |
0 |
src2 |
src1 |
100 |
dest |
111 1011 |
cv.sub.div4 rD, rs1, rs2 |
0 1110 |
1 |
0 |
src2 |
src1 |
110 |
dest |
111 1011 |
cv.sub.div8 rD, rs1, rs2 |