CORE-V Instruction Set Custom Extensions

CV32E40P supports the following CORE-V ISA X Custom Extensions, which can be enabled by setting COREV_PULP == 1.

  • Post-Increment load and stores, see Post-Increment Load & Store Instructions and Register-Register Load & Store Instructions, invoked in the tool chain with -march=rv32i*_xcvmem.

  • Hardware Loop extension, see Hardware Loops, invoked in the tool chain with -march=rv32i*_xcvhwlp.

  • ALU extensions, see ALU, which are divided into three sub-extensions:

    • bit manipulation instructions, invoked in the tool chain with -march=rv32i*_xcvbitmanip;

    • miscellaneous ALU instructions, invoked in the tool chain with -march=rv32i*_xcvalu; and

    • immediate branch instructions, invoked in the tool chain with -march=rv32i*_xcvbi.

  • Multiply-Accumulate extensions, see Multiply-Accumulate, invoked in the tool chain with -march=rv32i*_xcvmac.

  • Single Instruction Multiple Data (aka SIMD) extensions, see SIMD, invoked in the tool chain with -march=rv32i*_xcvsimd.

Additionally the event load instruction (cv.elw) is supported by setting COREV_CLUSTER == 1, see Event Load Instruction. This is a separate ISA extension, invoked in the tool chain with -march=rv32i*_xcvelw.

If not specified, all the operands are signed and immediate values are sign-extended.

To use such instructions, you need to compile your SW with the CORE-V GCC or Clang/LLVM compiler.

Note

Clang/LLVM assembler will be supported by 30 June 2023, with builtin function support by 31 December 2023.

Pseudo-instructions

This specification also includes documentation of some CORE-V pseudo-instructions. Pseudo-instructions are implemented in the assembler that are similar to a base instruction but provides control information to the assembler as opposed to generating its base instruction. This makes it easier to program as we gain clarity on the intention of the programmer.

Post-Increment Load & Store Instructions and Register-Register Load & Store Instructions

Post-Increment load and store instructions perform a load, or a store, respectively, while at the same time incrementing the address that was used for the memory access. Since it is a post-incrementing scheme, the base address is used for the access and the modified address is written back to the register-file. There are versions of those instructions that use immediates and those that use registers as offsets. The base address always comes from a register.

The custom post-increment load & store instructions and register-register load & store instructions are only supported if COREV_PULP == 1.

Load operations

Note

When same register is used as address and destination (rD == rs1) for post-incremented loads, loaded data has highest priority over incremented address when writing to this same register.

Table 18 Load operations

Mnemonic

Description

Register-Immediate Loads with Post-Increment

cv.lb rD, (rs1), Imm

rD = Sext(Mem8(rs1))

rs1 += Sext(Imm[11:0])

cv.lbu rD, (rs1), Imm

rD = Zext(Mem8(rs1))

rs1 += Sext(Imm[11:0])

cv.lh rD, (rs1), Imm

rD = Sext(Mem16(rs1))

rs1 += Sext(Imm[11:0])

cv.lhu rD, (rs1), Imm

rD = Zext(Mem16(rs1))

rs1 += Sext(Imm[11:0])

cv.lw rD, (rs1), Imm

rD = Mem32(rs1)

rs1 += Sext(Imm[11:0])

Register-Register Loads with Post-Increment

cv.lb rD, (rs1), rs2

rD = Sext(Mem8(rs1))

rs1 += rs2

cv.lbu rD, (rs1), rs2

rD = Zext(Mem8(rs1))

rs1 += rs2

cv.lh rD, (rs1), rs2

rD = Sext(Mem16(rs1))

rs1 += rs2

cv.lhu rD, (rs1), rs2

rD = Zext(Mem16(rs1))

rs1 += rs2

cv.lw rD, (rs1), rs2

rD = Mem32(rs1)

rs1 += rs2

Register-Register Loads

cv.lb rD, rs2(rs1)

rD = Sext(Mem8(rs1 + rs2))

cv.lbu rD, rs2(rs1)

rD = Zext(Mem8(rs1 + rs2))

cv.lh rD, rs2(rs1)

rD = Sext(Mem16(rs1 + rs2))

cv.lhu rD, rs2(rs1)

rD = Zext(Mem16(rs1 + rs2))

cv.lw rD, rs2(rs1)

rD = Mem32(rs1 + rs2)

Store operations

Table 19 Store operations

Mnemonic

Description

Register-Immediate Stores with Post-Increment

cv.sb rs2, (rs1), Imm

Mem8(rs1) = rs2

rs1 += Sext(Imm[11:0])

cv.sh rs2, (rs1), Imm

Mem16(rs1) = rs2

rs1 += Sext(Imm[11:0])

cv.sw rs2, (rs1), Imm

Mem32(rs1) = rs2

rs1 += Sext(Imm[11:0])

Register-Register Stores with Post-Increment

cv.sb rs2, (rs1), rs3

Mem8(rs1) = rs2

rs1 += rs3

cv.sh rs2, (rs1), rs3

Mem16(rs1) = rs2

rs1 += rs3

cv.sw rs2, (rs1), rs3

Mem32(rs1) = rs2

rs1 += rs3

Register-Register Stores

cv.sb rs2, rs3(rs1)

Mem8(rs1 + rs3) = rs2

cv.sh rs2 rs3(rs1)

Mem16(rs1 + rs3) = rs2

cv.sw rs2, rs3(rs1)

Mem32(rs1 + rs3) = rs2

Encoding

Table 20 Post-Increment Register-Immediate Load operations encoding

31 : 20

19 : 15

14 : 12

11 : 7

6 : 0

imm[11:0]

rs1

funct3

rD

opcode

Mnemonic

offset

base

000

dest

000 1011

cv.lb rD, (rs1), Imm

offset

base

100

dest

000 1011

cv.lbu rD, (rs1), Imm

offset

base

001

dest

000 1011

cv.lh rD, (rs1), Imm

offset

base

101

dest

000 1011

cv.lhu rD, (rs1), Imm

offset

base

010

dest

000 1011

cv.lw rD, (rs1), Imm

Table 21 Post-Increment Register-Register Load operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

rs2

rs1

funct3

rD

opcode

Mnemonic

000 0000

offset

base

011

dest

010 1011

cv.lb rD, (rs1), rs2

000 1000

offset

base

011

dest

010 1011

cv.lbu rD, (rs1), rs2

000 0001

offset

base

011

dest

010 1011

cv.lh rD, (rs1), rs2

000 1001

offset

base

011

dest

010 1011

cv.lhu rD, (rs1), rs2

000 0010

offset

base

011

dest

010 1011

cv.lw rD, (rs1), rs2

Table 22 Register-Register Load operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

rs2

rs1

funct3

rD

opcode

Mnemonic

000 0100

offset

base

011

dest

010 1011

cv.lb rD, rs2(rs1)

000 1100

offset

base

011

dest

010 1011

cv.lbu rD, rs2(rs1)

000 0101

offset

base

011

dest

010 1011

cv.lh rD, rs2(rs1)

000 1101

offset

base

011

dest

010 1011

cv.lhu rD, rs2(rs1)

000 0110

offset

base

011

dest

010 1011

cv.lw rD, rs2(rs1)

Table 23 Post-Increment Register-Immediate Store operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

imm[11:5]

rs2

rs1

funct3

imm[4:0]

opcode

Mnemonic

offset[11:5]

src

base

000

offset[4:0]

010 1011

cv.sb rs2, (rs1), Imm

offset[11:5]

src

base

001

offset[4:0]

010 1011

cv.sh rs2, (rs1), Imm

offset[11:5]

src

base

010

offset[4:0]

010 1011

cv.sw rs2, (rs1), Imm

Table 24 Post-Increment Register-Register Store operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

rs2

rs1

funct3

rs3

opcode

Mnemonic

001 0000

src

base

011

offset

010 1011

cv.sb rs2, (rs1), rs3

001 0001

src

base

011

offset

010 1011

cv.sh rs2, (rs1), rs3

001 0010

src

base

011

offse t

010 1011

cv.sw rs2, (rs1), rs3

Table 25 Register-Register Store operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

rs2

rs1

funct3

rs3

opcode

Mnemonic

001 0100

src

base

011

offset

010 1011

cv.sb rs2, rs3(rs1)

001 0101

src

base

011

offset

010 1011

cv.sh rs2, rs3(rs1)

001 0110

src

base

011

offset

010 1011

cv.sw rs2, rs3(rs1)

Event Load Instruction

The event load instruction cv.elw is only supported if the COREV_CLUSTER parameter is set to 1. The event load performs a load word and can cause the CV32E40P to enter a sleep state as explained in PULP Cluster Extension.

Event Load operation

Table 26 Event Load operation

Mnemonic

Description

Event Load

cv.elw rD, Imm(rs1)

rD = Mem32(Sext(Imm) + rs1)

Encoding

Table 27 Event Load operation encoding

31 : 20

19 : 15

14 : 12

11 : 7

6 : 0

imm[11:0]

rs1

funct3

rD

opcode

Mnemonic

offset

base

011

dest

000 1011

cv.elw rD, Imm(rs1)

Hardware Loops

The loop has to be setup before entering the loop body. For this purpose, there are two methods, either the long commands that separately set start- and end-addresses of the loop and the number of iterations, or the short command that does all of this in a single instruction. The short command has a limited range for the number of instructions contained in the loop and the loop must start in the next instruction after the setup instruction.

Due to start/end addresses constraint, the 2 LSBs are hardwired to 0. When using cv.start and cv.end instructions, the 2 LSBs of rs1 are ignored.

Hardware loop instructions and related CSRs are only supported if COREV_PULP == 1.

Details about the hardware loop constraints are provided in CORE-V Hardware Loop feature.

In the following tables, the hardware loop instructions are reported. In assembly, L is referred by 0 or 1.

Hardware Loops operations

Table 28 Long Hardware Loop Setup operations

Mnemonic

Description

cv.starti L, uimmL

lpstart[L] = PC + (uimmL << 2)

cv.start L, rs1

lpstart[L] = rs1

cv.endi L, uimmL

lpend[L] = PC + (uimmL << 2)

cv.end L, rs1

lpend[L] = rs1

cv.counti L, uimmL

lpcount[L] = uimmL

cv.count L, rs1

lpcount[L] = rs1

Table 29 Short Hardware Loop Setup operations

Mnemonic

Description

cv.setupi L, uimmL, uimmS

lpstart[L] = PC + 4

lpend[L] = PC + (uimmS << 2)

lpcount[L] = uimmL

cv.setup L, rs1, uimmL

lpstart[L] = PC + 4

lpend[L] = PC + (uimmL << 2)

lpcount[L] = rs1

Encoding

Table 30 Hardware Loops operations encoding

31 : 20

19 : 15

14 : 12

11 : 8

7

6 : 0

uimmL[11:0]

rs1

funct3

funct4

L

opcode

Mnemonic

uimmL[11:0]

00000

100

0000

L

010 1011

cv.starti L, uimmL

0000 0000 0000

src1

100

0001

L

010 1011

cv.start L, rs1

uimmL[11:0]

00000

100

0010

L

010 1011

cv.endi L, uimmL

0000 0000 0000

src1

100

0011

L

010 1011

cv.end L, rs1

uimmL[11:0]

00000

100

0100

L

010 1011

cv.counti L, uimmL

0000 0000 0000

src1

100

0101

L

010 1011

cv.count L, rs1

uimmL[11:0]

uimmS[4:0]

100

0110

L

010 1011

cv.setupi L, uimmL, uimmS

uimmL[11:0]

src1

100

0111

L

010 1011

cv.setup L, rs1, uimmL

ALU

CV32E40P supports advanced ALU operations that allow to perform multiple instructions that are specified in the base instruction set in one single instruction and thus increases efficiency of the core. For example, those instructions include zero-/sign-extension instructions for 8-bit and 16-bit operands, simple bit manipulation/counting instructions and min/max/avg instructions. The ALU does also support saturating, clipping and normalizing instructions which make fixed-point arithmetic more efficient.

The custom ALU extensions are only supported if COREV_PULP == 1.

The custom extensions to the ALU are split into several subgroups that belong together.

  • Bit manipulation instructions are useful to work on single bits or groups of bits within a word, see Bit Manipulation operations.

  • General ALU instructions try to fuse common used sequences into a single instruction and thus increase the performance of small kernels that use those sequence, see General ALU operations.

  • Immediate branching instructions are useful to compare a register with an immediate value before taking or not a branch, see see Immediate Branching operations.

Extract, Insert, Clear and Set instructions have the following meaning:

  • Extract Is3+1 or rs2[9:5]+1 bits from position Is2 or rs2[4:0] [and sign extend it]

  • Insert Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]

  • Clear Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]

  • Set Is3+1 or rs2[9:5]+1 bits at position Is2 or rs2[4:0]

Bit Reverse Instruction

This section will describe the cv.bitrev instruction from a bit manipulation perspective without describing it’s application as part of an FFT. The bit reverse instruction will reverse bits in groupings of 1, 2 or 3 bits. The number of grouped bits is described by Is3 as follows:

  • 0 - reverse single bits

  • 1 - reverse groups of 2 bits

  • 2 - reverse groups of 3 bits

The number of bits that are reversed can be controlled by Is2. This will specify the number of bits that will be removed by a left shift prior to the reverse operation resulting in the 32-Is2 least significant bits of the input value being reversed and the Is2 most significant bits of the input value being thrown out.

What follows is a few examples.

cv.bitrev x18, x20, 0, 4 (groups of 1 bit; radix-2)

in:    0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out:   0x0CC9A526 00001100110010011010010100100110

Swap pattern:
A B C D E F G H . . . . . . . . . . . . . . . . . . . . . . . .
0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . H G F E D C B A
0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0

In this example the input value is first shifted by 4 (Is2). Each individual bit is reversed. For example, bits 31 and 0 are swapped, 30 and 1, etc.

cv.bitrev x18, x20, 1, 4 (groups of 2 bits; radix-4)

in:    0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out:   0x0CC65A19 00001100110001100101101000011001

Swap pattern:
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P
01 10 01 00 10 10 01 01 10 01 00 11 00 11 00 00
P  O  N  M  L  K  J  I  H  G  F  E  D  C  B  A
00 00 11 00 11 00 01 10 01 01 10 10 00 01 10 01

In this example the input value is first shifted by 4 (Is2). Each group of two bits are reversed. For example, bits 31 and 30 are swapped with 1 and 0 (retaining their position relative to each other), bits 29 and 28 are swapped with 3 and 2, etc.

cv.bitrev x18, x20, 2, 4 (groups of 3 bits; radix-8)

in:    0xC64A5933 11000110010010100101100100110011
shift: 0x64A59330 01100100101001011001001100110000
out:   0x216B244B 00100001011010110010010001001011

Swap pattern:
A   B   C   D   E   F   G   H   I   J
011 001 001 010 010 110 010 011 001 100 00
   J   I   H   G   F   E   D   C   B   A
00 100 001 011 010 110 010 010 001 001 011

In this last example the input value is first shifted by 4 (Is2). Each group of three bits are reversed. For example, bits 31, 30 and 29 are swapped with 4, 3 and 2 (retaining their position relative to each other), bits 28, 27 and 26 are swapped with 7, 6 and 5, etc. Notice in this example that bits 0 and 1 are lost and the result is shifted right by two with bits 31 and 30 being tied to zero. Also notice that when J (100) is swapped with A (011), the four most significant bits are no longer zero as in the other cases. This may not be desirable if the intention is to pack a specific number of grouped bits aligned to the least significant bit and zero extended into the result. In this case care should be taken to set Is2 appropriately.

Bit Manipulation operations

Table 31 Bit Manipulation operations

Mnemonic

Description

cv.extract rD, rs1, Is3, Is2

rD = Sext(rs1[min(Is3+Is2,31):Is2])

Note: Sign extension is done over the MSB of the extracted part.

cv.extractu rD, rs1, Is3, Is2

rD = Zext(rs1[min(Is3+Is2,31):Is2])

cv.extractr rD, rs1, rs2

rD = Sext(rs1[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]])

Note: Sign extension is done over the MSB of the extracted part.

cv.extractur rD, rs1, rs2

rD = Zext(rs1[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]])

cv.insert rD, rs1, Is3, Is2

rD[min(Is3+Is2,31):Is2] = rs1[Is3-(max(Is3+Is2,31)-31):0]

The rest of the bits of rD are untouched and keep their previous value.

Is3 + Is2 must be < 32.

cv.insertr rD, rs1, rs2

rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] =

rs1[rs2[9:5]-(max(rs2[9:5]+rs2[4:0],31)-31):0]

The rest of the bits of rD are untouched and keep their previous value.

Is3 + Is2 must be < 32.

cv.bclr rD, rs1, Is3, Is2

rD[min(Is3+Is2,31):Is2] bits set to 0

The rest of the bits of rD are passed through from rs1 and are not modified.

cv.bclrr rD, rs1, rs2

rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] bits set to 0

The rest of the bits of rD are passed through from rs1 and are not modified.

cv.bset rD, rs1, Is3, Is2

rD[min(Is3+Is2,31):Is2] bits set to 1

The rest of the bits of rD are passed through from rs1 and are not modified.

cv.bsetr rD, rs1, rs2

rD[min(rs2[9:5]+rs2[4:0],31):rs2[4:0]] bits set to 1

The rest of the bits of rD are passed through from rs1 and are not modified.

cv.ff1 rD, rs1

rD = bit position of the first bit set in rs1, starting from LSB.

If bit 0 is set, rD will be 0. If only bit 31 is set, rD will be 31.

If rs1 is 0, rD will be 32.

cv.fl1 rD, rs1

rD = bit position of the last bit set in rs1, starting from MSB.

If bit 31 is set, rD will be 31. If only bit 0 is set, rD will be 0.

If rs1 is 0, rD will be 32.

cv.clb rD, rs1

rD = count leading bits of rs1

Number of consecutive 1’s or 0’s starting from MSB.

If rs1 is 0, rD will be 0. If rs1 is different than 0, returns (number - 1).

cv.cnt rD, rs1

rD = Population count of rs1

Number of bits set in rs1.

cv.ror rD, rs1, rs2

rD = RotateRight(rs1, rs2)

cv.bitrev rD, rs1, Is3, Is2

Given an input rs1 it returns a bit reversed representation assuming

FFT on 2^Is2 points in Radix 2^(Is3+1).

Is3 can be either 0 (radix-2), 1 (radix-4) or 2 (radix-8).

Note: When Is3 = 3, instruction has the same bahavior as if it was 0 (radix-2).

Bit Manipulation Encoding

Table 32 Immediate Bit Manipulation operations encoding

31: 30

29 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

f2

Is3[4:0]

Is2[4:0]

rs1

funct3

rD

opcode

Mnemonic

00

Luimm5[4:0]

Luimm5[4:0]

src

000

dest

101 1011

cv.extract rD, rs1, Is3, Is2

01

Luimm5[4:0]

Luimm5[4:0]

src

000

dest

101 1011

cv.extractu rD, rs1, Is3, Is2

10

Luimm5[4:0]

Luimm5[4:0]

src

000

dest

101 1011

cv.insert rD, rs1, Is3, Is2

00

Luimm5[4:0]

Luimm5[4:0]

src

001

dest

101 1011

cv.bclr rD, rs1, Is3, Is2

01

Luimm5[4:0]

Luimm5[4:0]

src

001

dest

101 1011

cv.bset rD, rs1, Is3, Is2

11

000, Luimm2[1:0]

Luimm5[4:0]

src

001

dest

101 1011

cv.bitrev rD, rs1, Is3, Is2

Table 33 Register Bit Manipulation operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

rs2

rs1

funct3

rD

opcode

001 1000

src2

src1

011

dest

010 1011

cv.extractr rD, rs1, rs2

001 1001

src2

src1

011

dest

010 1011

cv.extractur rD, rs1, rs2

001 1010

src2

src1

011

dest

010 1011

cv.insertr rD, rs1, rs2

001 1100

src2

src1

011

dest

010 1011

cv.bclrr rD, rs1, rs2

001 1101

src2

scr1

011

dest

010 1011

cv.bsetr rD, rs1, rs2

010 0000

src2

src1

011

dest

010 1011

cv.ror rD, rs1, rs2

010 0001

00000

src1

011

dest

010 1011

cv.ff1 rD, rs1

010 0010

00000

src1

011

dest

010 1011

cv.fl1 rD, rs1

010 0011

00000

src1

011

dest

010 1011

cv.clb rD, rs1

010 0100

00000

src1

011

dest

010 1011

cv.cnt rD, rs1

General ALU operations

Table 34 General ALU operations

Mnemonic

Description

cv.abs rD, rs1

rD = rs1 < 0 ? -rs1 : rs1

cv.sle rD, rs1, rs2

rD = rs1 <= rs2 ? 1 : 0

Note: Comparison is signed.

cv.sleu rD, rs1, rs2

rD = rs1 <= rs2 ? 1 : 0

Note: Comparison is unsigned.

cv.min rD, rs1, rs2

rD = rs1 < rs2 ? rs1 : rs2

Note: Comparison is signed.

cv.minu rD, rs1, rs2

rD = rs1 < rs2 ? rs1 : rs2

Note: Comparison is unsigned.

cv.max rD, rs1, rs2

rD = rs1 < rs2 ? rs2 : rs1

Note: Comparison is signed.

cv.maxu rD, rs1, rs2

rD = rs1 < rs2 ? rs2 : rs1

Note: Comparison is unsigned.

cv.exths rD, rs1

rD = Sext(rs1[15:0])

cv.exthz rD, rs1

rD = Zext(rs1[15:0])

cv.extbs rD, rs1

rD = Sext(rs1[7:0])

cv.extbz rD, rs1

rD = Zext(rs1[7:0])

cv.clip rD, rs1, Is2

if rs1 <= -2^(Is2-1), rD = -2^(Is2-1),

else if rs1 >= 2^(Is2-1)-1, rD = 2^(Is2-1)-1,

else rD = rs1

Note: If Is2 is equal to 0,

-2^(Is2-1) is equivalent to -1 while (2^(Is2-1)-1) is equivalent to 0.

cv.clipu rD, rs1, Is2

if rs1 <= 0, rD = 0,

else if rs1 >= 2^(Is2-1)-1, rD = 2^(Is2-1)-1,

else rD = rs1

Note: If Is2 is equal to 0, (2^(Is2-1)-1) is equivalent to 0.

cv.clipr rD, rs1, rs2

rs2’ = rs2 & 0x7FFFFFFF

if rs1 <= -(rs2’+1), rD = -(rs2’+1),

else if rs1 >=rs2’, rD = rs2’,

else rD = rs1

cv.clipur rD, rs1, rs2

rs2’ = rs2 & 0x7FFFFFFF

if rs1 <= 0, rD = 0,

else if rs1 >= rs2’, rD = rs2’,

else rD = rs1

cv.addN rD, rs1, rs2, Is3

rD = (rs1 + rs2) >>> Is3

Note: Arithmetic shift right.

Setting Is3 to 1 replaces former cv.avg.

cv.adduN rD, rs1, rs2, Is3

rD = (rs1 + rs2) >> Is3

Note: Logical shift right.

Setting Is3 to 1 replaces former cv.avgu.

cv.addRN rD, rs1, rs2, Is3

rD = (rs1 + rs2 + 2^(Is3-1)) >>> Is3

Note: Arithmetic shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.adduRN rD, rs1, rs2, Is3

rD = (rs1 + rs2 + 2^(Is3-1))) >> Is3

Note: Logical shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.subN rD, rs1, rs2, Is3

rD = (rs1 - rs2) >>> Is3

Note: Arithmetic shift right.

cv.subuN rD, rs1, rs2, Is3

rD = (rs1 - rs2) >> Is3

Note: Logical shift right.

cv.subRN rD, rs1, rs2, Is3

rD = (rs1 - rs2 + 2^(Is3-1)) >>> Is3

Note: Arithmetic shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.subuRN rD, rs1, rs2, Is3

rD = (rs1 - rs2 + 2^(Is3-1))) >> Is3

Note: Logical shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.addNr rD, rs1, rs2

rD = (rD + rs1) >>> rs2[4:0]

Note: Arithmetic shift right.

cv.adduNr rD, rs1, rs2

rD = (rD + rs1) >> rs2[4:0]

Note: Logical shift right.

cv.addRNr rD, rs1, rs2

rD = (rD + rs1 + 2^(rs2[4:0]-1)) >>> rs2[4:0]

Note: Arithmetic shift right.

If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0.

cv.adduRNr rD, rs1, rs2

rD = (rD + rs1 + 2^(rs2[4:0]-1))) >> rs2[4:0]

Note: Logical shift right.

If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0.

cv.subNr rD, rs1, rs2

rD = (rD - rs1) >>> rs2[4:0]

Note: Arithmetic shift right.

cv.subuNr rD, rs1, rs2

rD = (rD - rs1) >> rs2[4:0]

Note: Logical shift right.

cv.subRNr rD, rs1, rs2

rD = (rD - rs1+ 2^(rs2[4:0]-1)) >>> rs2[4:0]

Note: Arithmetic shift right.

If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0.

cv.subuRNr rD, rs1, rs2

rD = (rD - rs1+ 2^(rs2[4:0]-1))) >> rs2[4:0]

Note: Logical shift right.

If rs2[4:0] is equal to 0, 2^(rs2[4:0]-1) is equivalent to 0.

General ALU Encoding

Table 35 General ALU operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

rs2

rs1

funct3

rD

opcode

010 1000

00000

src1

011

dest

010 1011

cv.abs rD, rs1

010 1001

src2

src1

011

dest

010 1011

cv.sle rD, rs1, rs2

010 1010

src2

src1

011

dest

010 1011

cv.sleu rD, rs1, rs2

010 1011

src2

src1

011

dest

010 1011

cv.min rD, rs1, rs2

010 1100

src2

src1

011

dest

010 1011

cv.minu rD, rs1, rs2

010 1101

src2

src1

011

dest

010 1011

cv.max rD, rs1, rs2

010 1110

src2

src1

011

dest

010 1011

cv.maxu rD, rs1, rs2

011 0000

00000

src1

011

dest

010 1011

cv.exths rD, rs1

011 0001

00000

src1

011

dest

010 1011

cv.exthz rD, rs1

011 0010

00000

src1

011

dest

010 1011

cv.extbs rD, rs1

011 0011

00000

src1

011

dest

010 1011

cv.extbz rD, rs1

Table 36 General ALU operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

Is2[4:0]

rs1

funct3

rD

opcode

011 1000

Luimm5[4:0]

src1

011

dest

010 1011

cv.clip rD, rs1, Is2

011 1001

Luimm5[4:0]

src1

011

dest

010 1011

cv.clipu rD, rs1, Is2

011 1010

src2

src1

011

dest

010 1011

cv.clipr rD, rs1, rs2

011 1011

src2

src1

011

dest

010 1011

cv.clipur rD, rs1, rs2

Table 37 General ALU operations encoding

31: 30

29 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

f2

Is3[4:0]

rs2

rs1

funct3

rD

opcode

00

Luimm5[4:0]

src2

src1

010

dest

101 1011

cv.addN rD, rs1, rs2, Is3

01

Luimm5[4:0]

src2

src1

010

dest

101 1011

cv.adduN rD, rs1, rs2, Is3

10

Luimm5[4:0]

src2

src1

010

dest

101 1011

cv.addRN rD, rs1, rs2, Is3

11

Luimm5[4:0]

src2

src1

010

dest

101 1011

cv.adduRN rD, rs1, rs2, Is3

00

Luimm5[4:0]

src2

src1

011

dest

101 1011

cv.subN rD, rs1, rs2, Is3

01

Luimm5[4:0]

src2

src1

011

dest

101 1011

cv.subuN rD, rs1, rs2, Is3

10

Luimm5[4:0]

src2

src1

011

dest

101 1011

cv.subRN rD, rs1, rs2, Is3

11

Luimm5[4:0]

src2

src1

011

dest

101 1011

cv.subuRN rD, rs1, rs2, Is3

Table 38 General ALU operations encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

Is3[4:0]

rs1

funct3

rD

opcode

100 0000

src2

src1

011

dest

010 1011

cv.addNr rD, rs1, rs2

100 0001

src2

src1

011

dest

010 1011

cv.adduNr rD, rs1, rs

100 0010

src2

src1

011

dest

010 1011

cv.addRNr rD, rs1, rs

100 0011

src2

src1

011

dest

010 1011

cv.adduRNr rD, rs1, rs2

100 0100

src2

src1

011

dest

010 1011

cv.subNr rD, rs1, rs2

100 0101

src2

src1

011

dest

010 1011

cv.subuNr rD, rs1, rs2

100 0110

src2

src1

011

dest

010 1011

cv.subRNr rD, rs1, rs2

100 0111

src2

src1

011

dest

010 1011

cv.subuRNr rD, rs1, rs2

Immediate Branching operations

Table 39 Immediate Branching operations

Mnemonic

Description

cv.beqimm rs1, Imm5, Imm12

Branch to PC + (Imm12 << 1) if rs1 is equal to Imm5.

Note: Imm5 is signed.

cv.bneimm rs1, Imm5, Imm12

Branch to PC + (Imm12 << 1) if rs1 is not equal to Imm5.

Note: Imm5 is signed.

Immediate Branching Encoding

Table 40 Immediate Branching encoding

31

30 : 25

24 : 20

19 : 15

14 : 12

11 : 8

7

6 : 0

Imm12[12]

Imm12[10:5]

Imm5

rs1

funct3

Imm12

Imm12

opcode

Imm12[12]

Imm12[10:5]

Imm5

src1

110

Imm12[4:1]

Imm12[11]

000 1011

cv.beqimm rs1, Imm5, Imm12

Imm12[12]

Imm12[10:5]

Imm5

src1

111

Imm12[4:1]

Imm12[11]

000 1011

cv.bneimm rs1, Imm5, Imm12

Multiply-Accumulate

CV32E40P supports custom extensions for multiply-accumulate and half-word multiplications with an optional post-multiplication shift.

The custom multiply-accumulate extensions are only supported if COREV_PULP == 1.

16-Bit x 16-Bit Multiplication operations

Table 41 16-Bit x 16-Bit Multiplication operations

Mnemonic

Description

cv.muluN rD, rs1, rs2, Is3

rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0])) >> Is3

Note: Logical shift right.

cv.mulhhuN rD, rs1, rs2, Is3

rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16])) >> Is3

Note: Logical shift right.

cv.mulsN rD, rs1, rs2, Is3

rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0])) >>> Is3

Note: Arithmetic shift right.

cv.mulhhsN rD, rs1, rs2, Is3

rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16])) >>> Is3

Note: Arithmetic shift right.

cv.muluRN rD, rs1, rs2, Is3

rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + 2^(Is3-1)) >> Is3

Note: Logical shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.mulhhuRN rD, rs1, rs2, Is3

rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + 2^(Is3-1)) >> Is3

Note: Logical shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.mulsRN rD, rs1, rs2, Is3

rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + 2^(Is3-1)) >>> Is3

Note: Arithmetic shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.mulhhsRN rD, rs1, rs2, Is3

rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + 2^(Is3-1)) >>> Is3

Note: Arithmetic shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

16-Bit x 16-Bit Multiplication pseudo-instructions

Table 42 16-Bit x 16-Bit Multiplication pseudo-instructions

Mnemonic

Base Instruction

Description

cv.mulu rD, rs1, rs2

cv.muluN rD, rs1, rs2, 0

rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0])) >> 0

Note: Logical shift right.

cv.mulhhu rD, rs1, rs2

cv.mulhhuN rD, rs1, rs2, 0

rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16])) >> 0

Note: Logical shift right.

cv.muls rD, rs1, rs2

cv.mulsN rD, rs1, rs2, 0

rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0])) >> 0

Note: Arithmetic shift right.

cv.mulhhs rD, rs1, rs2

cv.mulhhsN rD, rs1, rs2, 0

rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16])) >> 0

Note: Arithmetic shift right.

16-Bit x 16-Bit Multiply-Accumulate operations

Table 43 16-Bit x 16-Bit Multiply-Accumulate operations

Mnemonic

Description

cv.macuN rD, rs1, rs2, Is3

rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + rD) >> Is3

Note: Logical shift right.

cv.machhuN rD, rs1, rs2, Is3

rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + rD) >> Is3

Note: Logical shift right.

cv.macsN rD, rs1, rs2, Is3

rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + rD) >>> Is3

Note: Arithmetic shift right.

cv.machhsN rD, rs1, rs2, Is3

rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + rD) >>> Is3

Note: Arithmetic shift right.

cv.macuRN rD, rs1, rs2, Is3

rD[31:0] = (Zext(rs1[15:0]) * Zext(rs2[15:0]) + rD + 2^(Is3-1)) >> Is3

Note: Logical shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.machhuRN rD, rs1, rs2, Is3

rD[31:0] = (Zext(rs1[31:16]) * Zext(rs2[31:16]) + rD + 2^(Is3-1)) >> Is3

Note: Logical shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.macsRN rD, rs1, rs2, Is3

rD[31:0] = (Sext(rs1[15:0]) * Sext(rs2[15:0]) + rD + 2^(Is3-1)) >>> Is3

Note: Arithmetic shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

cv.machhsRN rD, rs1, rs2, Is3

rD[31:0] = (Sext(rs1[31:16]) * Sext(rs2[31:16]) + rD + 2^(Is3-1)) >>> Is3

Note: Arithmetic shift right.

If Is3 is equal to 0, 2^(Is3-1) is equivalent to 0.

32-Bit x 32-Bit Multiply-Accumulate operations

Table 44 32-Bit x 32-Bit Multiply-Accumulate operations

Mnemonic

Description

cv.mac rD, rs1, rs2

rD = rD + rs1 * rs2

cv.msu rD, rs1, rs2

rD = rD - rs1 * rs2

Encoding

Table 45 16-Bit x 16-Bit Multiplication encoding

31: 30

29 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

f2

Is3[4:0]

rs2

rs1

funct3

rD

opcode

00

Luimm5[4:0]

src2

src1

101

dest

101 1011

cv.muluN rD, rs1, rs2, Is3

01

Luimm5[4:0]

src2

src1

101

dest

101 1011

cv.mulhhuN rD, rs1, rs2, Is3

00

Luimm5[4:0]

src2

src1

100

dest

101 1011

cv.mulsN rD, rs1, rs2, Is3

01

Luimm5[4:0]

src2

src1

100

dest

101 1011

cv.mulhhsN rD, rs1, rs2, Is3

10

Luimm5[4:0]

src2

src1

101

dest

101 1011

cv.muluRN rD, rs1, rs2, Is3

11

Luimm5[4:0]

src2

src1

101

dest

101 1011

cv.mulhhuRN rD, rs1, rs2, Is3

10

Luimm5[4:0]

src2

src1

100

dest

101 1011

cv.mulsRN rD, rs1, rs2, Is3

11

Luimm5[4:0]

src2

src1

100

dest

101 1011

cv.mulhhsRN rD, rs1, rs2, Is3

Table 46 16-Bit x 16-Bit Multiply-Accumulate encoding

31: 30

29 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

f2

Is3[4:0]

rs2

rs1

funct3

rD

opcode

00

Luimm5[4:0]

src2

src1

111

dest

101 1011

cv.macuN rD, rs1, rs2, Is3

01

Luimm5[4:0]

src2

src1

111

dest

101 1011

cv.machhuN rD, rs1, rs2, Is3

00

Luimm5[4:0]

src2

src1

110

dest

101 1011

cv.macsN rD, rs1, rs2, Is3

01

Luimm5[4:0]

src2

src1

110

dest

101 1011

cv.machhsN rD, rs1, rs2, Is3

10

Luimm5[4:0]

src2

src1

111

dest

101 1011

cv.macuRN rD, rs1, rs2, Is3

11

Luimm5[4:0]

src2

src1

111

dest

101 1011

cv.machhuRN rD, rs1, rs2, Is3

10

Luimm5[4:0]

src2

src1

110

dest

101 1011

cv.macsRN rD, rs1, rs2, Is3

11

Luimm5[4:0]

src2

src1

110

dest

101 1011

cv.machhsRN rD, rs1, rs2, Is3

Table 47 32-Bit x 32-Bit Multiply-Accumulate encoding

31 : 25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct7

rs2

rs1

funct3

rD

opcode

100 1000

src2

src1

011

dest

010 1011

cv.mac rD, rs1, rs2

100 1001

src2

src1

011

dest

010 1011

cv.msu rD, rs1, rs2

SIMD

The SIMD instructions perform operations on multiple sub-word elements at the same time. This is done by segmenting the data path into smaller parts when 8- or 16-bit operations should be performed.

The custom SIMD extensions are only supported if COREV_PULP == 1.

Note

See the comments at the start of CORE-V Instruction Set Custom Extensions on availability of the compiler tool chains. Support for SIMD will be primarily through assembly code and builtin functions, with no auto-vectorization and limited other optimization. Simple auto-vectorization (add, sub…) and optimization will be evaluated once a stable GCC toolchain is available.

SIMD instructions are available in two flavors:

  • 8-Bit, to perform four operations on the 4 bytes inside a 32-bit word at the same time (.b)

  • 16-Bit, to perform two operations on the 2 half-words inside a 32-bit word at the same time (.h)

All the operations are rounded to the specified bidwidth as for the original RISC-V arithmetic operations. This is described by the “and” operation with a MASK. No overflow or carry-out flags are generated as for the 32-bit operations.

Additionally, there are three modes that influence the second operand:

  1. Normal mode, vector-vector operation. Both operands, from rs1 and rs2, are treated as vectors of bytes or half-words.

    e.g. cv.add.h x3,x2,x1 performs:

    x3[31:16] = x2[31:16] + x1[31:16]

    x3[15: 0] = x2[15: 0] + x1[15: 0]

  2. Scalar replication mode (.sc), vector-scalar operation. Operand 1 is treated as a vector, while operand 2 is treated as a scalar and replicated two or four times to form a complete vector. The LSP is used for this purpose.

    e.g. cv.add.sc.h x3,x2,x1 performs:

    x3[31:16] = x2[31:16] + x1[15: 0]

    x3[15: 0] = x2[15: 0] + x1[15: 0]

  3. Immediate scalar replication mode (.sci), vector-scalar operation. Operand 1 is treated as vector, while operand 2 is treated as a scalar and comes from a 6-bit immediate.

    The immediate is either sign- or zero-extended depending on the operation. If not specified, the immediate is sign-extended with the exception of all cv.shuffle* where it is always unsigned.

    e.g. cv.add.sci.h x3,x2,-22 performs:

    x3[31:16] = x2[31:16] + 0xFFEA

    x3[15: 0] = x2[15: 0] + 0xFFEA

And finally for all the SIMD Bit Manipulation instructions, Imm6 is zero-extended.

In the following tables, the index i ranges from 0 to 1 for 16-Bit operations and from 0 to 3 for 8-Bit operations:

  • The index 0 is 15:0 for 16-Bit operations or 7:0 for 8-Bit operations.

  • The index 1 is 31:16 for 16-Bit operations or 15:8 for 8-Bit operations.

  • The index 2 is 23:16 for 8-Bit operations.

  • The index 3 is 31:24 for 8-Bit operations.

And I5, I4, I3, I2, I1 and I0 respectively represent bits 5, 4, 3, 2, 1 and 0 of the immediate value.

SIMD ALU operations

Table 48 SIMD ALU operations

Mnemonic

Description

cv.add[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = (rs1[i] + op2[i]) & {0xFFFF, 0xFF}

cv.sub[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = (rs1[i] - op2[i]) & {0xFFFF, 0xFF}

cv.avg[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = ((rs1[i] + op2[i]) & {0xFFFF, 0xFF}) >> 1

Note: Arithmetic right shift.

cv.avgu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = ((rs1[i] + op2[i]) & {0xFFFF, 0xFF}) >> 1

Note: Immediate is zero-extended, shift is logical.

cv.min[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] < op2[i] ? rs1[i] : op2[i]

cv.minu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] < op2[i] ? rs1[i] : op2[i]

Note: Immediate is zero-extended, comparison is unsigned.

cv.max[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] > op2[i] ? rs1[i] : op2[i]

cv.maxu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] > op2[i] ? rs1[i] : op2[i]

Note: Immediate is zero-extended, comparison is unsigned.

cv.srl[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] >> op2[i]

Note: Immediate is zero-extended, shift is logical.

Only Imm6[3:0] and rs2[3:0] are used for .h instruction and Imm6[2:0] and rs2[2:0] for .b instruction.

In .sci case, unused Imm6 bits must be set to 0.

cv.sra[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] >>> op2[i]

Note: Immediate is zero-extended, shift is arithmetic.

Only Imm6[3:0] and rs2[3:0] are used for .h instruction and Imm6[2:0] and rs2[2:0] for .b instruction.

In .sci case, unused Imm6 bits must be set to 0.

cv.sll[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] << op2[i]

Note: Immediate is zero-extended, shift is logical.

Only Imm6[3:0] and rs2[3:0] are used for .h instruction and Imm6[2:0] and rs2[2:0] for .b instruction.

In .sci case, unused Imm6 bits must be set to 0.

cv.or[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] | op2[i]

cv.xor[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] ^ op2[i]

cv.and[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] & op2[i]

cv.abs{.h,.b} rD, rs1

rD[i] = rs1[i] < 0 ? -rs1[i] : rs1[i]

SIMD Bit Manipulation operations

Table 49 SIMD Bit Manipulation operations

Mnemonic

Description

cv.extract.h rD, rs1, Imm6

rD = Sext(rs1[I0*16+15:I0*16])

Note: Only Imm6[0] bit is used and other Imm6 bits must be set to 0.

cv.extract.b rD, rs1, Imm6

rD = Sext(rs1[(I1:I0)*8+7:(I1:I0)*8])

Note: Only Imm6[1:0] bits are used and other Imm6 bits must be set to 0.

cv.extractu.h rD, rs1, Imm6

rD = Zext(rs1[I0*16+15:I0*16])

Note: Only Imm6[0] bit is used and other Imm6 bits must be set to 0.

cv.extractu.b rD, rs1, Imm6

rD = Zext(rs1[(I1:I0)*8+7:(I1:I0)*8])

Note: Only Imm6[1:0] bits are used and other Imm6 bits must be set to 0.

cv.insert.h rD, rs1, Imm6

rD[I0*16+15:I0*16] = rs1[15:0]

Note: The rest of the bits of rD are untouched and keep their previous value.

Only Imm6[0] bit is used and other Imm6 bits must be set to 0.

cv.insert.b rD, rs1, Imm6

rD[(I1:I0)*8+7:(I1:I0)*8] = rs1[7:0]

Note: The rest of the bits of rD are untouched and keep their previous value.

Only Imm6[1:0] bits are used and other Imm6 bits must be set to 0.

SIMD Dot Product operations

Table 50 SIMD Dot Product operations

Mnemonic

Description

cv.dotup[.sc,.sci].h rD, rs1, [rs2, Imm6]

rD = rs1[0] * op2[0] + rs1[1] * op2[1]

Note: All operands are unsigned.

cv.dotup[.sc,.sci].b rD, rs1, [rs2, Imm6]

rD = rs1[0] * op2[0] + rs1[1] * op2[1] +

rs1[2] * op2[2] + rs1[3] * op2[3]

Note: All operands are unsigned.

cv.dotusp[.sc,.sci].h rD, rs1, [rs2, Imm6]

rD = rs1[0] * op2[0] + rs1[1] * op2[1]

Note: rs1 is treated as unsigned, while op2 is treated as signed.

cv.dotusp[.sc,.sci].b rD, rs1, [rs2, Imm6]

rD = rs1[0] * op2[0] + rs1[1] * op2[1] +

rs1[2] * op2[2] + rs1[3] * op2[3]

Note: rs1 is treated as unsigned, while op2 is treated as signed.

cv.dotsp[.sc,.sci].h rD, rs1, [rs2, Imm6]

rD = rs1[0] * op2[0] + rs1[1] * op2[1]

Note: All operands are signed.

cv.dotsp[.sc,.sci].b rD, rs1, [rs2, Imm6]

rD = rs1[0] * op2[0] + rs1[1] * op2[1] +

rs1[2] * op2[2] + rs1[3] * op2[3]

Note: All operands are signed.

cv.sdotup[.sc,.sci].h rD, rs1, [rs2, Imm6]

rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]

Note: All operands are unsigned.

cv.sdotup[.sc,.sci].b rD, rs1, [rs2, Imm6]

rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] +

rs1[2] * op2[2] + rs1[3] * op2[3]

Note: All operands are unsigned.

cv.sdotusp[.sc,.sci].h rD, rs1, [rs2, Imm6]

rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]

Note: rs1 is treated as unsigned while op2 is treated as signed.

cv.sdotusp[.sc,.sci].b rD, rs1, [rs2, Imm6]

rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] +

rs1[2] * op2[2] + rs1[3] * op2[3]

Note: rs1 is treated as unsigned while op2 is treated as signed.

cv.sdotsp[.sc,.sci].h rD, rs1, [rs2, Imm6]

rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1]

Note: All operands are signed.

cv.sdotsp[.sc,.sci].b rD, rs1, [rs2, Imm6]

rD = rD + rs1[0] * op2[0] + rs1[1] * op2[1] +

rs1[2] * op2[2] + rs1[3] * op2[3]

Note: All operands are signed.

SIMD Shuffle and Pack operations

Table 51 SIMD Shuffle and Pack operations

Mnemonic

Description

cv.shuffle.h rD, rs1, rs2

rD[31:16] = rs1[rs2[16]*16+15:rs2[16]*16]

rD[15:0] = rs1[rs2[0]*16+15:rs2[0]*16]

cv.shuffle.sci.h rD, rs1, Imm6

rD[31:16] = rs1[I1*16+15:I1*16]

rD[15:0] = rs1[I0*16+15:I0*16]

Note: Only Imm6[1:0] bits are used and other Imm6 bits must be set to 0.

cv.shuffle.b rD, rs1, rs2

rD[31:24] = rs1[rs2[25:24]*8+7:rs2[25:24]*8]

rD[23:16] = rs1[rs2[17:16]*8+7:rs2[17:16]*8]

rD[15:8] = rs1[rs2[9:8]*8+7:rs2[9:8]*8]

rD[7:0] = rs1[rs2[1:0]*8+7:rs2[1:0]*8]

cv.shuffleI0.sci.b rD, rs1, Imm6

rD[31:24] = rs1[7:0]

rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]

rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]

rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

cv.shuffleI1.sci.b rD, rs1, Imm6

rD[31:24] = rs1[15:8]

rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]

rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]

rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

cv.shuffleI2.sci.b rD, rs1, Imm6

rD[31:24] = rs1[23:16]

rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]

rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]

rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

cv.shuffleI3.sci.b rD, rs1, Imm6

rD[31:24] = rs1[31:24]

rD[23:16] = rs1[(I5:I4)*8+7: (I5:I4)*8]

rD[15:8] = rs1[(I3:I2)*8+7: (I3:I2)*8]

rD[7:0] = rs1[(I1:I0)*8+7:(I1:I0)*8]

cv.shuffle2.h rD, rs1, rs2

rD[31:16] = ((rs2[17] == 1) ? rs1 : rD)[rs2[16]*16+15:rs2[16]*16]

rD[15:0] = ((rs2[1] == 1) ? rs1 : rD)[rs2[0]*16+15:rs2[0]*16]

cv.shuffle2.b rD, rs1, rs2

rD[31:24] = ((rs2[26] == 1) ? rs1 : rD)[rs2[25:24]*8+7:rs2[25:24]*8]

rD[23:16] = ((rs2[18] == 1) ? rs1 : rD)[rs2[17:16]*8+7:rs2[17:16]*8]

rD[15:8] = ((rs2[10] == 1) ? rs1 : rD)[rs2[9:8]*8+7:rs2[9:8]*8]

rD[7:0] = ((rs2[2] == 1) ? rs1 : rD)[rs2[1:0]*8+7:rs2[1:0]*8]

cv.pack rD, rs1, rs2

rD[31:16] = rs1[15:0]

rD[15:0] = rs2[15:0]

cv.pack.h rD, rs1, rs2

rD[31:16] = rs1[31:16]

rD[15:0] = rs2[31:16]

cv.packhi.b rD, rs1, rs2

rD[31:24] = rs1[7:0]

rD[23:16] = rs2[7:0]

Note: The rest of the bits of rD are untouched and keep their previous value.

cv.packlo.b rD, rs1, rs2

rD[15:8] = rs1[7:0]

rD[7:0] = rs2[7:0]

Note: The rest of the bits of rD are untouched and keep their previous value.

SIMD ALU Encoding

Table 52 SIMD ALU encoding

31 : 27

26

25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct5

F

rs2

rs1

funct3

rD

opcode

0 0000

0

0

src2

src1

000

dest

111 1011

cv.add.h rD, rs1, rs2

0 0000

0

0

src2

src1

100

dest

111 1011

cv.add.sc.h rD, rs1, rs2

0 0000

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.add.sci.h rD, rs1, Imm6

0 0000

0

0

src2

src1

001

dest

111 1011

cv.add.b rD, rs1, rs2

0 0000

0

0

src2

src1

101

dest

111 1011

cv.add.sc.b rD, rs1, rs2

0 0000

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.add.sci.b rD, rs1, Imm6

0 0001

0

0

src2

src1

000

dest

111 1011

cv.sub.h rD, rs1, rs2

0 0001

0

0

src2

src1

100

dest

111 1011

cv.sub.sc.h rD, rs1, rs2

0 0001

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.sub.sci.h rD, rs1, Imm6

0 0001

0

0

src2

src1

001

dest

111 1011

cv.sub.b rD, rs1, rs2

0 0001

0

0

src2

src1

101

dest

111 1011

cv.sub.sc.b rD, rs1, rs2

0 0001

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.sub.sci.b rD, rs1, Imm6

0 0010

0

0

src2

src1

000

dest

111 1011

cv.avg.h rD, rs1, rs2

0 0010

0

0

src2

src1

100

dest

111 1011

cv.avg.sc.h rD, rs1, rs2

0 0010

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.avg.sci.h rD, rs1, Imm6

0 0010

0

0

src2

src1

001

dest

111 1011

cv.avg.b rD, rs1, rs2

0 0010

0

0

src2

src1

101

dest

111 1011

cv.avg.sc.b rD, rs1, rs2

0 0010

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.avg.sci.b rD, rs1, Imm6

0 0011

0

0

src2

src1

000

dest

111 1011

cv.avgu.h rD, rs1, rs2

0 0011

0

0

src2

src1

100

dest

111 1011

cv.avgu.sc.h rD, rs1, rs2

0 0011

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.avgu.sci.h rD, rs1, Imm6

0 0011

0

0

src2

src1

001

dest

111 1011

cv.avgu.b rD, rs1, rs2

0 0011

0

0

src2

src1

101

dest

111 1011

cv.avgu.sc.b rD, rs1, rs2

0 0011

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.avgu.sci.b rD, rs1, Imm6

0 0100

0

0

src2

src1

000

dest

111 1011

cv.min.h rD, rs1, rs2

0 0100

0

0

src2

src1

100

dest

111 1011

cv.min.sc.h rD, rs1, rs2

0 0100

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.min.sci.h rD, rs1, Imm6

0 0100

0

0

src2

src1

001

dest

111 1011

cv.min.b rD, rs1, rs2

0 0100

0

0

src2

src1

101

dest

111 1011

cv.min.sc.b rD, rs1, rs2

0 0100

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.min.sci.b rD, rs1, Imm6

0 0101

0

0

src2

src1

000

dest

111 1011

cv.minu.h rD, rs1, rs2

0 0101

0

0

src2

src1

100

dest

111 1011

cv.minu.sc.h rD, rs1, rs2

0 0101

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.minu.sci.h rD, rs1, Imm6

0 0101

0

0

src2

src1

001

dest

111 1011

cv.minu.b rD, rs1, rs2

0 0101

0

0

src2

src1

101

dest

111 1011

cv.minu.sc.b rD, rs1, rs2

0 0101

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.minu.sci.b rD, rs1, Imm6

0 0110

0

0

src2

src1

000

dest

111 1011

cv.max.h rD, rs1, rs2

0 0110

0

0

src2

src1

100

dest

111 1011

cv.max.sc.h rD, rs1, rs2

0 0110

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.max.sci.h rD, rs1, Imm6

0 0110

0

0

src2

src1

001

dest

111 1011

cv.max.b rD, rs1, rs2

0 0110

0

0

src2

src1

101

dest

111 1011

cv.max.sc.b rD, rs1, rs2

0 0110

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.max.sci.b rD, rs1, Imm6

0 0111

0

0

src2

src1

000

dest

111 1011

cv.maxu.h rD, rs1, rs2

0 0111

0

0

src2

src1

100

dest

111 1011

cv.maxu.sc.h rD, rs1, rs2

0 0111

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.maxu.sci.h rD, rs1, Imm6

0 0111

0

0

src2

src1

001

dest

111 1011

cv.maxu.b rD, rs1, rs2

0 0111

0

0

src2

src1

101

dest

111 1011

cv.maxu.sc.b rD, rs1, rs2

0 0111

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.maxu.sci.b rD, rs1, Imm6

0 1000

0

0

src2

src1

000

dest

111 1011

cv.srl.h rD, rs1, rs2

0 1000

0

0

src2

src1

100

dest

111 1011

cv.srl.sc.h rD, rs1, rs2

0 1000

0

Imm6[0] 00 Imm6[3:1]

src1

110

dest

111 1011

cv.srl.sci.h rD, rs1, Imm6

0 1000

0

0

src2

src1

001

dest

111 1011

cv.srl.b rD, rs1, rs2

0 1000

0

0

src2

src1

101

dest

111 1011

cv.srl.sc.b rD, rs1, rs2

0 1000

0

Imm6[0] 000 Imm6[2:1]

src1

111

dest

111 1011

cv.srl.sci.b rD, rs1, Imm6

0 1001

0

0

src2

src1

000

dest

111 1011

cv.sra.h rD, rs1, rs2

0 1001

0

0

src2

src1

100

dest

111 1011

cv.sra.sc.h rD, rs1, rs2

0 1001

0

Imm6[0] 00 Imm6[3:1]

src1

110

dest

111 1011

cv.sra.sci.h rD, rs1, Imm6

0 1001

0

0

src2

src1

001

dest

111 1011

cv.sra.b rD, rs1, rs2

0 1001

0

0

src2

src1

101

dest

111 1011

cv.sra.sc.b rD, rs1, rs2

0 1001

0

Imm6[0] 000 Imm6[2:1]

src1

111

dest

111 1011

cv.sra.sci.b rD, rs1, Imm6

0 1010

0

0

src2

src1

000

dest

111 1011

cv.sll.h rD, rs1, rs2

0 1010

0

0

src2

src1

100

dest

111 1011

cv.sll.sc.h rD, rs1, rs2

0 1010

0

Imm6[0] 00 Imm6[3:1]

src1

110

dest

111 1011

cv.sll.sci.h rD, rs1, Imm6

0 1010

0

0

src2

src1

001

dest

111 1011

cv.sll.b rD, rs1, rs2

0 1010

0

0

src2

src1

101

dest

111 1011

cv.sll.sc.b rD, rs1, rs2

0 1010

0

Imm6[0] 000 Imm6[2:1]

src1

111

dest

111 1011

cv.sll.sci.b rD, rs1, Imm6

0 1011

0

0

src2

src1

000

dest

111 1011

cv.or.h rD, rs1, rs2

0 1011

0

0

src2

src1

100

dest

111 1011

cv.or.sc.h rD, rs1, rs2

0 1011

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.or.sci.h rD, rs1, Imm6

0 1011

0

0

src2

src1

001

dest

111 1011

cv.or.b rD, rs1, rs2

0 1011

0

0

src2

src1

101

dest

111 1011

cv.or.sc.b rD, rs1, rs2

0 1011

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.or.sci.b rD, rs1, Imm6

0 1100

0

0

src2

src1

000

dest

111 1011

cv.xor.h rD, rs1, rs2

0 1100

0

0

src2

src1

100

dest

111 1011

cv.xor.sc.h rD, rs1, rs2

0 1100

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.xor.sci.h rD, rs1, Imm6

0 1100

0

0

src2

src1

001

dest

111 1011

cv.xor.b rD, rs1, rs2

0 1100

0

0

src2

src1

101

dest

111 1011

cv.xor.sc.b rD, rs1, rs2

0 1100

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.xor.sci.b rD, rs1, Imm6

0 1101

0

0

src2

src1

000

dest

111 1011

cv.and.h rD, rs1, rs2

0 1101

0

0

src2

src1

100

dest

111 1011

cv.and.sc.h rD, rs1, rs2

0 1101

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.and.sci.h rD, rs1, Imm6

0 1101

0

0

src2

src1

001

dest

111 1011

cv.and.b rD, rs1, rs2

0 1101

0

0

src2

src1

101

dest

111 1011

cv.and.sc.b rD, rs1, rs2

0 1101

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.and.sci.b rD, rs1, Imm6

0 1110

0

0

0

src1

000

dest

111 1011

cv.abs.h rD, rs1

0 1110

0

0

0

src1

001

dest

111 1011

cv.abs.b rD, rs1

1 0111

0

Imm6[0] 00000

src1

000

dest

111 1011

cv.extract.h rD, rs1, Imm6

1 0111

0

Imm6[0] 0000 Imm6[1]

src1

001

dest

111 1011

cv.extract.b rD, rs1, Imm6

1 0111

0

Imm6[0] 00000

src1

010

dest

111 1011

cv.extractu.h rD, rs1, Imm6

1 0111

0

Imm6[0] 0000 Imm6[1]

src1

011

dest

111 1011

cv.extractu.b rD, rs1, Imm6

1 0111

0

Imm6[0] 00000

src1

100

dest

111 1011

cv.insert.h rD, rs1, Imm6

1 0111

0

Imm6[0] 0000 Imm6[1]

src1

101

dest

111 1011

cv.insert.b rD, rs1, Imm6

1 0000

0

0

src2

src1

000

dest

111 1011

cv.dotup.h rD, rs1, rs2

1 0000

0

0

src2

src1

100

dest

111 1011

cv.dotup.sc.h rD, rs1, rs2

1 0000

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.dotup.sci.h rD, rs1, Imm6

1 0000

0

0

src2

src1

001

dest

111 1011

cv.dotup.b rD, rs1, rs2

1 0000

0

0

src2

src1

101

dest

111 1011

cv.dotup.sc.b rD, rs1, rs2

1 0000

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.dotup.sci.b rD, rs1, Imm6

1 0001

0

0

src2

src1

000

dest

111 1011

cv.dotusp.h rD, rs1, rs2

1 0001

0

0

src2

src1

100

dest

111 1011

cv.dotusp.sc.h rD, rs1, rs2

1 0001

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.dotusp.sci.h rD, rs1, Imm6

1 0001

0

0

src2

src1

001

dest

111 1011

cv.dotusp.b rD, rs1, rs2

1 0001

0

0

src2

src1

101

dest

111 1011

cv.dotusp.sc.b rD, rs1, rs2

1 0001

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.dotusp.sci.b rD, rs1, Imm6

1 0010

0

0

src2

src1

000

dest

111 1011

cv.dotsp.h rD, rs1, rs2

1 0010

0

0

src2

src1

100

dest

111 1011

cv.dotsp.sc.h rD, rs1, rs2

1 0010

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.dotsp.sci.h rD, rs1, Imm6

1 0010

0

0

src2

src1

001

dest

111 1011

cv.dotsp.b rD, rs1, rs2

1 0010

0

0

src2

src1

101

dest

111 1011

cv.dotsp.sc.b rD, rs1, rs2

1 0010

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.dotsp.sci.b rD, rs1, Imm6

1 0011

0

0

src2

src1

000

dest

111 1011

cv.sdotup.h rD, rs1, rs2

1 0011

0

0

src2

src1

100

dest

111 1011

cv.sdotup.sc.h rD, rs1, rs2

1 0011

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.sdotup.sci.h rD, rs1, Imm6

1 0011

0

0

src2

src1

001

dest

111 1011

cv.sdotup.b rD, rs1, rs2

1 0011

0

0

src2

src1

101

dest

111 1011

cv.sdotup.sc.b rD, rs1, rs2

1 0011

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.sdotup.sci.b rD, rs1, Imm6

1 0100

0

0

src2

src1

000

dest

111 1011

cv.sdotusp.h rD, rs1, rs2

1 0100

0

0

src2

src1

100

dest

111 1011

cv.sdotusp.sc.h rD, rs1, rs2

1 0100

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.sdotusp.sci.h rD, rs1, Imm6

1 0100

0

0

src2

src1

001

dest

111 1011

cv.sdotusp.b rD, rs1, rs2

1 0100

0

0

src2

src1

101

dest

111 1011

cv.sdotusp.sc.b rD, rs1, rs2

1 0100

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.sdotusp.sci.b rD, rs1, Imm6

1 0101

0

0

src2

src1

000

dest

111 1011

cv.sdotsp.h rD, rs1, rs2

1 0101

0

0

src2

src1

100

dest

111 1011

cv.sdotsp.sc.h rD, rs1, rs2

1 0101

0

Imm6[0|5:1]

src1

110

dest

111 1011

cv.sdotsp.sci.h rD, rs1, Imm6

1 0101

0

0

src2

src1

001

dest

111 1011

cv.sdotsp.b rD, rs1, rs2

1 0101

0

0

src2

src1

101

dest

111 1011

cv.sdotsp.sc.b rD, rs1, rs2

1 0101

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.sdotsp.sci.b rD, rs1, Imm6

1 1000

0

0

src2

src1

000

dest

111 1011

cv.shuffle.h rD, rs1, rs2

1 1000

0

Imm6[0] 0000 Imm6[1]

src1

110

dest

111 1011

cv.shuffle.sci.h rD, rs1, Imm6

1 1000

0

0

src2

src1

001

dest

111 1011

cv.shuffle.b rD, rs1, rs2

1 1000

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.shuffleI0.sci.b rD, rs1, Imm6

1 1001

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.shuffleI1.sci.b rD, rs1, Imm6

1 1010

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.shuffleI2.sci.b rD, rs1, Imm6

1 1011

0

Imm6[0|5:1]

src1

111

dest

111 1011

cv.shuffleI3.sci.b rD, rs1, Imm6

1 1100

0

0

src2

src1

000

dest

111 1011

cv.shuffle2.h rD, rs1, rs2

1 1100

0

0

src2

src1

001

dest

111 1011

cv.shuffle2.b rD, rs1, rs2

1 1110

0

0

src2

src1

000

dest

111 1011

cv.pack rD, rs1, rs2

1 1110

0

1

src2

src1

000

dest

111 1011

cv.pack.h rD, rs1, rs2

1 1111

0

1

src2

src1

001

dest

111 1011

cv.packhi.b rD, rs1, rs2

1 1111

0

0

src2

src1

001

dest

111 1011

cv.packlo.b rD, rs1, rs2

SIMD Comparison operations

SIMD comparisons are done on individual bytes (.b) or half-words (.h), depending on the chosen mode. If the comparison result is true, all bits in the corresponding byte/half-word are set to 1. If the comparison result is false, all bits are set to 0.

The default mode (no .sc, .sci) compares the lowest byte/half-word of the first operand with the lowest byte/half-word of the second operand, and so on. If the mode is set to scalar replication (.sc), always the lowest byte/half-word of the second operand is used for comparisons, thus instead of a vector comparison a scalar comparison is performed. In the immediate scalar replication mode (.sci), the immediate given to the instruction is used for the comparison.

Table 53 SIMD Comparison operations

Mnemonic

Description

cv.cmpeq[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] == op2 ? ‘1 : ‘0

cv.cmpne[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] != op2 ? ‘1 : ‘0

cv.cmpgt[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] > op2 ? ‘1 : ‘0

cv.cmpge[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] >=op2 ? ‘1 : ‘0

cv.cmplt[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] < op2 ? ‘1 : ‘0

cv.cmple[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] <= op2 ? ‘1 : ‘0

cv.cmpgtu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] > op2 ? ‘1 : ‘0

Note: Unsigned comparison.

cv.cmpgeu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] >= op2 ? ‘1 : ‘0

Note: Unsigned comparison.

cv.cmpltu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] < op2 ? ‘1 : ‘0

Note: Unsigned comparison.

cv.cmpleu[.sc,.sci]{.h,.b} rD, rs1, [rs2, Imm6]

rD[i] = rs1[i] <= op2 ? ‘1 : ‘0

Note: Unsigned comparison.

SIMD Comparison Encoding

Table 54 SIMD Comparison encoding

31 : 27

26

25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct5

F

rs2

rs1

funct3

rD

opcode

0 0000

1

0

src2

src1

000

dest

111 1011

cv.cmpeq.h rD, rs1, rs2

0 0000

1

0

src2

src1

100

dest

111 1011

cv.cmpeq.sc.h rD, rs1, rs2

0 0000

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmpeq.sci.h rD, rs1, Imm6

0 0000

1

0

src2

src1

001

dest

111 1011

cv.cmpeq.b rD, rs1, rs2

0 0000

1

0

src2

src1

101

dest

111 1011

cv.cmpeq.sc.b rD, rs1, rs2

0 0000

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmpeq.sci.b rD, rs1, Imm6

0 0001

1

0

src2

src1

000

dest

111 1011

cv.cmpne.h rD, rs1, rs2

0 0001

1

0

src2

src1

100

dest

111 1011

cv.cmpne.sc.h rD, rs1, rs2

0 0001

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmpne.sci.h rD, rs1, Imm6

0 0001

1

0

src2

src1

001

dest

111 1011

cv.cmpne.b rD, rs1, rs2

0 0001

1

0

src2

src1

101

dest

111 1011

cv.cmpne.sc.b rD, rs1, rs2

0 0001

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmpne.sci.b rD, rs1, Imm6

0 0010

1

0

src2

src1

000

dest

111 1011

cv.cmpgt.h rD, rs1, rs2

0 0010

1

0

src2

src1

100

dest

111 1011

cv.cmpgt.sc.h rD, rs1, rs2

0 0010

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmpgt.sci.h rD, rs1, Imm6

0 0010

1

0

src2

src1

001

dest

111 1011

cv.cmpgt.b rD, rs1, rs2

0 0010

1

0

src2

src1

101

dest

111 1011

cv.cmpgt.sc.b rD, rs1, rs2

0 0010

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmpgt.sci.b rD, rs1, Imm6

0 0011

1

0

src2

src1

000

dest

111 1011

cv.cmpge.h rD, rs1, rs2

0 0011

1

0

src2

src1

100

dest

111 1011

cv.cmpge.sc.h rD, rs1, rs2

0 0011

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmpge.sci.h rD, rs1, Imm6

0 0011

1

0

src2

src1

001

dest

111 1011

cv.cmpge.b rD, rs1, rs2

0 0011

1

0

src2

src1

101

dest

111 1011

cv.cmpge.sc.b rD, rs1, rs2

0 0011

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmpge.sci.b rD, rs1, Imm6

0 0100

1

0

src2

src1

000

dest

111 1011

cv.cmplt.h rD, rs1, rs2

0 0100

1

0

src2

src1

100

dest

111 1011

cv.cmplt.sc.h rD, rs1, rs2

0 0100

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmplt.sci.h rD, rs1, Imm6

0 0100

1

0

src2

src1

001

dest

111 1011

cv.cmplt.b rD, rs1, rs2

0 0100

1

0

src2

src1

101

dest

111 1011

cv.cmplt.sc.b rD, rs1, rs2

0 0100

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmplt.sci.b rD, rs1, Imm6

0 0101

1

0

src2

src1

000

dest

111 1011

cv.cmple.h rD, rs1, rs2

0 0101

1

0

src2

src1

100

dest

111 1011

cv.cmple.sc.h rD, rs1, rs2

0 0101

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmple.sci.h rD, rs1, Imm6

0 0101

1

0

src2

src1

001

dest

111 1011

cv.cmple.b rD, rs1, rs2

0 0101

1

0

src2

src1

101

dest

111 1011

cv.cmple.sc.b rD, rs1, rs2

0 0101

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmple.sci.b rD, rs1, Imm6

0 0110

1

0

src2

src1

000

dest

111 1011

cv.cmpgtu.h rD, rs1, rs2

0 0110

1

0

src2

src1

100

dest

111 1011

cv.cmpgtu.sc.h rD, rs1, rs2

0 0110

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmpgtu.sci.h rD, rs1, Imm6

0 0110

1

0

src2

src1

001

dest

111 1011

cv.cmpgtu.b rD, rs1, rs2

0 0110

1

0

src2

src1

101

dest

111 1011

cv.cmpgtu.sc.b rD, rs1, rs2

0 0110

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmpgtu.sci.b rD, rs1, Imm6

0 0111

1

0

src2

src1

000

dest

111 1011

cv.cmpgeu.h rD, rs1, rs2

0 0111

1

0

src2

src1

100

dest

111 1011

cv.cmpgeu.sc.h rD, rs1, rs2

0 0111

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmpgeu.sci.h rD, rs1, Imm6

0 0111

1

0

src2

src1

001

dest

111 1011

cv.cmpgeu.b rD, rs1, rs2

0 0111

1

0

src2

src1

101

dest

111 1011

cv.cmpgeu.sc.b rD, rs1, rs2

0 0111

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmpgeu.sci.b rD, rs1, Imm6

0 1000

1

0

src2

src1

000

dest

111 1011

cv.cmpltu.h rD, rs1, rs2

0 1000

1

0

src2

src1

100

dest

111 1011

cv.cmpltu.sc.h rD, rs1, rs2

0 1000

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmpltu.sci.h rD, rs1, Imm6

0 1000

1

0

src2

src1

001

dest

111 1011

cv.cmpltu.b rD, rs1, rs2

0 1000

1

0

src2

src1

101

dest

111 1011

cv.cmpltu.sc.b rD, rs1, rs2

0 1000

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmpltu.sci.b rD, rs1, Imm6

0 1001

1

0

src2

src1

000

dest

111 1011

cv.cmpleu.h rD, rs1, rs2

0 1001

1

0

src2

src1

100

dest

111 1011

cv.cmpleu.sc.h rD, rs1, rs2

0 1001

1

Imm6[0|5:1]

src1

110

dest

111 1011

cv.cmpleu.sci.h rD, rs1, Imm6

0 1001

1

0

src2

src1

001

dest

111 1011

cv.cmpleu.b rD, rs1, rs2

0 1001

1

0

src2

src1

101

dest

111 1011

cv.cmpleu.sc.b rD, rs1, rs2

0 1001

1

Imm6[0|5:1]

src1

111

dest

111 1011

cv.cmpleu.sci.b rD, rs1, Imm6

SIMD Complex-number operations

SIMD Complex-number operations are extra instructions that uses the packed-SIMD extentions to represent Complex-numbers. These extentions use only the half-words mode and only operand in registers. A number C = {Re, Im} is represented as a vector of two 16-Bits signed numbers. C[0] is the real part [15:0], C[1] is the imaginary part [31:16]. Such operations are subtraction of 2 complexes with post rotation by -j, the complex and conjugate, complex multiplications and complex additions/substractions. The complex multiplications are performed in two separate instructions, one to compute the real part, and one to compute the imaginary part.

As for all the other SIMD instructions, no flags are raised and CSR register are unmodified. No carry, overflow is generated. Instructions are rounded up as the mask & 0xFFFF explicits.

Table 55 SIMD Complex-number operations

Mnemonic

Description

cv.cplxmul.r{/,.div2,.div4,.div8}

rD[1] = rD[1]

rD[0] = (rs1[0]*rs2[0] - rs1[1]*rs2[1]) >> {15,16,17,18}

Note: Arithmetic shift right.

cv.cplxmul.i{/,.div2,.div4,.div8}

rD[1] = (rs1[0]*rs2[1] + rs1[1]*rs2[0]) >> {15,16,17,18}

rD[0] = rD[0]

Note: Arithmetic shift right.

cv.cplxconj

rD[1] = -rs1[1]

rD[0] = rs1[0]

cv.subrotmj{/,.div2,.div4,.div8}

rD[1] = ((rs2[0] - rs1[0]) & 0xFFFF) >> {0,1,2,3}

rD[0] = ((rs1[1] - rs2[1]) & 0xFFFF) >> {0,1,2,3}

Note: Arithmetic shift right.

cv.add{.div2,.div4,.div8}

rD[1] = ((rs1[1] + rs2[1]) & 0xFFFF) >> {1,2,3}

rD[0] = ((rs1[0] + rs2[0]) & 0xFFFF) >> {1,2,3}

Note: Arithmetic shift right.

cv.sub{.div2,.div4,.div8}

rD[1] = ((rs1[1] - rs2[1]) & 0xFFFF) >> {1,2,3}

rD[0] = ((rs1[0] - rs2[0]) & 0xFFFF) >> {1,2,3}

Note: Arithmetic shift right.

SIMD Complex-number Encoding

Table 56 SIMD Complex-number encoding

31 : 27

26

25

24 : 20

19 : 15

14 : 12

11 : 7

6 : 0

funct5

F

rs2

rs1

funct3

rD

opcode

0 1010

1

0

src2

src1

000

dest

111 1011

cv.cplxmul.r rD, rs1, rs2

0 1010

1

0

src2

src1

010

dest

111 1011

cv.cplxmul.r.div2 rD, rs1, rs2

0 1010

1

0

src2

src1

100

dest

111 1011

cv.cplxmul.r.div4 rD, rs1, rs2

0 1010

1

0

src2

src1

110

dest

111 1011

cv.cplxmul.r.div8 rD, rs1, rs2

0 1010

1

1

src2

src1

000

dest

111 1011

cv.cplxmul.i rD, rs1, rs2

0 1010

1

1

src2

src1

010

dest

111 1011

cv.cplxmul.i.div2 rD, rs1, rs2

0 1010

1

1

src2

src1

100

dest

111 1011

cv.cplxmul.i.div4 rD, rs1, rs2

0 1010

1

1

src2

src1

110

dest

111 1011

cv.cplxmul.i.div8 rD, rs1, rs2

0 1011

1

0

00000

src1

000

dest

111 1011

cv.cplxconj rD, rs1

0 1100

1

0

src2

src1

000

dest

111 1011

cv.subrotmj rD, rs1, rs2

0 1100

1

0

src2

src1

010

dest

111 1011

cv.subrotmj.div2 rD, rs1, rs2

0 1100

1

0

src2

src1

100

dest

111 1011

cv.subrotmj.div4 rD, rs1, rs2

0 1100

1

0

src2

src1

110

dest

111 1011

cv.subrotmj.div8 rD, rs1, rs2

0 1101

1

0

src2

src1

010

dest

111 1011

cv.add.div2 rD, rs1, rs2

0 1101

1

0

src2

src1

100

dest

111 1011

cv.add.div4 rD, rs1, rs2

0 1101

1

0

src2

src1

110

dest

111 1011

cv.add.div8 rD, rs1, rs2

0 1110

1

0

src2

src1

010

dest

111 1011

cv.sub.div2 rD, rs1, rs2

0 1110

1

0

src2

src1

100

dest

111 1011

cv.sub.div4 rD, rs1, rs2

0 1110

1

0

src2

src1

110

dest

111 1011

cv.sub.div8 rD, rs1, rs2